Citation: | SUN Zaibo, ZENG Wentao, ZHOU Kun, WU Jialin, LI Gongjian, HUANG Liang, ZHAO Jiangtai. Identification of Ordovician oceanic island basalt in the Changning-Menglian suture zone and its tectonic implications:Evidence from geochemical and geochronological data[J]. Geological Bulletin of China, 2017, 36(10): 1760-1771. |
The Changning-Menglian tectonic belt has been traditionally known as one of the Paleo-Tethys suture zones in the Sanjiang orogenic domain, Southwest China. This study focused on the newly found volcano-sedimentary rocks consisting of vesicular and amygdaloidal basalts, andesitic basalt, siliceous rock, and meta-mud siltstone in the Mengyong-Manghong area located to the east of the Tongchangjie ophiolitic rocks in the central Changning-Menglian suture zone. LA-ICP-MS zircon U-Pb dating reveals that the 206Pb/238U weighted mean age of the amygdaloidal basalt is 449.3±8.4Ma(MSWD=3.5), suggesting that this suite of volcanic rocks was emplaced in Ordovician. The basaltic rocks are rich in Al2O3 (12.11%~15.04%), show high K2O/N2O ratios of 0.03~0.44 and high MgO (6.78%~12.34%, 9.43% on average) with high Mg# of 45.9~61.7, and Cr, Ni, Nb values of 58.6×10-6~636×10-6, 57.4×10-6~410×10-6 and 18.9×10-6~32.8×10-6 (310.3×10-6, 202.1×10-6 and 25.06×10-6 on average) respectively. They have flat chondrite-normalized REE patterns with low (La/Yb)N (averagely 5.25), (Ce/Yb)N (4.42 on average) and (Ce/Sm)N (1.68 on average). The ΣREE value of the basaltic rocks increases with the increasing of the total alkaline, which suggests that the rocks are similar to the Azores-type oceanic island basalts (OIB). Generally, this suite of volcanic rocks is alkaline with OIB affinity, which might have resulted from the melting of the head of the hotspot in the Intra-oceanic plate. The new discovery of the Azores-type OIB in the Changing-Menglian records the product of OIB activity in the Early Paleozoic evolution of Tethys Ocean, which provides important basic information for further understanding of the composite arc-basin system in the Tethyan domain of Southwest China.
[1] | 刘本培, 冯庆来, Chonglakmani C, 等.滇西古特提斯多岛洋的结构及其南北延伸[J].地学前缘, 2002, 9(3):67-76. |
[2] |
段向东. 滇西南耿马地区昌宁-孟连带盆地演化[D]. 中国地质大学(武汉)博士学位论文, 2008. |
[3] | 刘本培, 冯庆来, 方念乔, 等.滇西昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化[J].地球科学, 1993, 18(5):529-539. |
[4] | 丛柏林, 吴根耀, 张旗, 等.中国滇西古特提斯构造带岩石大地构造演化[J].中国科学(B辑), 1993, 23(11):1201-1207. |
[5] | 张旗, 周德进, 赵大升.滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论[J].岩石学报, 1996, 12(1):17-28. |
[6] | 莫宣学, 沈上越, 朱勤文.等.三江中南段火山岩-蛇绿岩与成矿[M].北京:地质出版社, 1998. |
[7] | 莫宣学, 路风香, 沈上越.等.三江地区特提斯火山作用与成矿[M].北京:地质出版社, 1993. |
[8] | 莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘, 2006, 13(6):43-51. |
[9] |
李静. 云南省双江县牛井山蛇绿混杂岩的岩石学研究[D]. 昆明理工大学硕士学位论文, 2004. |
[10] | 赵靖, 钟大赉, 王毅.滇西澜沧变质带的变形序列与变质作用初步研究[J].地质科学, 1994, 29(4):366-372. |
[11] | 钟大赉.川滇西部古特提斯造山带[M].北京:科学出版社, 1998. |
[12] | 潘桂棠, 陈智梁, 李兴振, 等.东特提斯地质构造形成演化[M].北京:地质出版社, 1997. |
[13] | 潘桂堂, 李兴振, 王立全, 等.青藏高原及邻区大地构造单元初步划分[J].地质通报, 2002, 21(11):701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 |
[14] | 王保弟, 王立全, 潘桂棠, 等.昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J].科学通报, 2013, 58(4):344-354. |
[15] | 刘桂春, 孙载波, 曾文涛, 等.滇西双江县勐库地区湾河蛇绿混杂岩的厘定、地球化学特征及其地质意义[J].岩石矿物学杂志, 2017, 36(2):163-174. |
[16] | 李静, 孙载波, 徐桂香, 等.滇西双江县勐库地区榴闪岩的发现与厘定[J].矿物学报, 2015, 35(4):421-424. |
[17] | 徐桂香, 曾文涛, 孙载波, 等.滇西双江县勐库地区(退变质)榴辉岩的岩石学、矿物学特征[J].地质通报, 2016, 35(7):1036-1045. |
[18] | 陈光艳, 徐桂香, 孙载波, 等.滇西双江县勐库地区退变质榴辉岩中闪石类矿物的成因研究[J].岩石矿物学杂志, 2017, 36(1):36-47. |
[19] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. |
[20] | Liu Y S, Hu Z C, Gao S. et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. |
[21] | Ludwig K R. User'smanual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Geochronology Center Special Publication, Berkeley, 2003:41-70. |
[22] | Condie K C. Archaean Greestone Belt. Amsterdam:Elsvier, 1981, 381 |
[23] | Sun S S, McDough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Publication of London, 1989, 42:313-345. |
[24] | Zielinski R A. Trace element evaluation of a suite of rocks from Reunion Island, Indian Ocean[J].Geochimica et Cosmochimica Acta, 1975, 39:713-734. doi: 10.1016/0016-7037(75)90012-5 |
[25] | Zielinski R A, Frey F A. Gough Island:evaluation of a fractional crystallization model[J].Contributions to Mineralogy and Petrology, 1970, 29:242-254. doi: 10.1007/BF00373308 |
[26] | White W M, Tapia M D M, Schilling J G. The petrology and geochemistry of the Azores Islands[J].Contributions to Mineralogy and Petrology, 1979, 69:201-213. doi: 10.1007/BF00372322 |
[27] | Saunders A D. The rare element characteristics of igneous rocks from the ocean basins[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam:Elsevier, 1984:205-236. |
[28] | Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile element[J]. Chem. Geol., 1997, 20(4):325-343. |
[29] | Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annu. Rev. Earth Planet. Sci., 1995, 23:251-285. doi: 10.1146/annurev.ea.23.050195.001343 |
[30] | Hofman A W, Jochum K P, Seufert M. Nd and Pb in oceanic basalts:New constrains on mantle evolution[J]. Earth and Planetary Science Letters, 1986, 79:33-45. doi: 10.1016/0012-821X(86)90038-5 |
[31] | 李曙光.蛇绿岩生成构造环境的Ba-Nb-Th-La判别图[J].岩石学报, 1993, 9(2):146-157. |
[32] | Wood D A, Joron J L, Treuil M. A reappraisal of the use of trace elements to classify and discriminate between magma series erupled in different tectonic settings[J]. Earth and Planet Science Letters, 1980, 45:326-336. |
[33] | Mullen E D. MnO-TiO2-P2O5:A minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogensis[J]. Earth and Planet Science Letters, 1983, 65:53-62. |
[34] | Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. J. Metamor. Geol., 2000, 18(4):423-439. |
[35] | 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 |
[36] | 毛晓长, 王立全, 李冰, 等.云县-景谷火山弧带大中河晚志留世火山岩的发现及其地质意义[J].岩石学报, 2012, 28(5):1517-1528. |
[37] | 王冬兵, 罗亮, 唐渊, 等.昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义[J].岩石学报, 2016, 32(8), 2317-2329. |
[38] | Nie X M, Feng Q L, Qian X, et al. Magmatic record of Prototethyan evolution in SWYunnan, China:Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanicrocks in the southern Lancangjiang zone[J]. Gondwana Research, 2015, 28(2):757-768. doi: 10.1016/j.gr.2014.05.011 |
[39] | Xing X W, Wang Y J, Cawood P A, et al. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan[J]. Internation Journal of Earth Sciences, 2017, 106(5):1469-1486. doi: 10.1007/s00531-015-1282-z |
[40] | 康欢, 李大鹏, 陈岳龙, 等.云南宝山东缘早古生代高Si花岗岩的成因及构造意义[J].现代地质, 2016, 30(5):1026-1038. |
[41] | 王中刚, 于学元, 赵振华, 等.稀土元素地球化学[M].北京:科学出版社, 1989:1-535. |
[42] | Zielinski R A, Frey F A. Gough Island:evaluation of a fractional crystallization model[J].Contributions to Mineralogy and Petrology, 1970, 29:242-254. doi: 10.1007/BF00373308 |
① | 云南省地质调查院. 1: 5万香竹林、勐勇、勐撒、懂过、安雅、耿马、勐库幅区域地质矿产调查报告. 2016. |
Geological map of the study area
Geological section of the Laonanzhang area in Menyong Town, Gengma Country
Photograph and photomicrograph of the green amygdaloidal basalt in Laonanzhang section
CL images of selected zircons from Laonanzhang basalt
U-Pb concordia diagram of zircon from the Laonanzhang basalt
Chondrite-normalized REE patterns(a)and primitive mantle normalized trace element diagram(b)of the Laonanzhang basalt
The Nb/Y-Zr/TiO2×0.0001(a)and Nb/Yb-Th/Yb(b)diagrams
The Nb-Nb/Th and La-La/Nb diagrams
The TiO2-10MnO-10P2O5 and Ti/100-Zr-3Y diagrams