2017 Vol. 36, No. 10
Article Contents

HOU Yunling, HUANG Baixin, JIA Xiaochuan, YANG Xuejun, YE Chunlin, LÜ Zhiwei, YANG Hong. Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance[J]. Geological Bulletin of China, 2017, 36(10): 1783-1799.
Citation: HOU Yunling, HUANG Baixin, JIA Xiaochuan, YANG Xuejun, YE Chunlin, LÜ Zhiwei, YANG Hong. Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance[J]. Geological Bulletin of China, 2017, 36(10): 1783-1799.

Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance

  • The genetic model of the widely distributed magmatism in the Mid-Gangdise belt of Tibet during Early Cretaceous is still controversial. The authors conducted field observation, zircon U-Pb dating and geochemical studies of the intrusions from Zabuye salt lake in the Mid-Gangdise belt. Zircon U-Pb age dating suggests that the the intrusion of Zabuye salt lake magma occurred in two periods (142Ma and 100Ma), and both have intermediate to acidic plutons and gabbro dikes. The first phase plutons are I-type metaluminous and high-k calcalkaline series granitic rocks, whereas the second phase plutons belong to metaluminous high-k calcalkaline series dioritic intrusions. Both intermediate to acidic plutons show enrichment of LILE (Rb, Ba, Th and U) and depletion of HFSE (Nb, Ta), with strong magma mixing characters.The data collected from previous researchers show that the first phase granitic plutons and gabbro dike were induced by the roll-back of the subducted Bangong-Nujiang Oceanic slab, while the second phase plutons and dike resulted from the oceanic slab break-off. The results obtained by the authors provide evidence for the southern direction subduction, roll-back and break-off of the Bangong-Nujiang Oceanic slab.

  • 加载中
  • [1] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3):281-302.

    Google Scholar

    [2] Xu R H, Schrer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study[J]. Journal Geology, 1985, 93:41-57.

    Google Scholar

    [3] Pearce J A, Mei H J. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London, 1988, 327:169-201. doi: 10.1098/rsta.1988.0125

    CrossRef Google Scholar

    [4] Ding L, Kapp P, Yin A, et al. Early Tertiary volcanism in the Qiangtang terrane of central Tibet:Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44:1833-1865. doi: 10.1093/petrology/egg061

    CrossRef Google Scholar

    [5] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. GSA Bulletin, 2007, 119:917-932. doi: 10.1130/B26033.1

    CrossRef Google Scholar

    [6] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533.

    Google Scholar

    [7] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008

    CrossRef Google Scholar

    [8] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    [9] 张亮亮, 朱弟成, 赵志丹, 等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 2011, 27(7):1938-1948.

    Google Scholar

    [10] 张亮亮, 朱弟成, 赵志丹, 等.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束[J].岩石学报, 2010, 26(6):1871-1888.

    Google Scholar

    [11] 张晓倩, 朱弟成, 赵志丹, 等.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J].岩石学报, 2010, 26(6):1793-1804.

    Google Scholar

    [12] 张晓倩, 朱弟成, 赵志丹, 等.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束[J].岩石学报, 2012, 28(5):1615-34.

    Google Scholar

    [13] Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continen-tcontinent collision zone[J]. Lithos, 2013, 168-169:144-159. doi: 10.1016/j.lithos.2013.01.012

    CrossRef Google Scholar

    [14] Chen Y, Zhu D C, Zhao Z D, et al. Slab break off triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2):449-463. doi: 10.1016/j.gr.2013.06.005

    CrossRef Google Scholar

    [15] Wu H, Li C, Hu P Y, et al. Early Cretaceous (100~105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2014, 57(9/10):1-17.

    Google Scholar

    [16] Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97A:51-66.

    Google Scholar

    [17] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [18] 朱弟成, 莫宣学, 赵志丹, 等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘, 2009, 16(2):1-20.

    Google Scholar

    [19] 朱弟成, 潘桂棠, 王立全, 等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报, 2008, 27(4):458-468.

    Google Scholar

    [20] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1):47-69.

    Google Scholar

    [21] Black P, Gulson B L. The age of the Mud Tank carbonatite, Strang-ways Range, Northern Territory[J]. BMR J. Aust. Geol. Geophys., 1978, 3:227-232.

    Google Scholar

    [22] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Res., 2004, 131:231-282. doi: 10.1016/j.precamres.2003.12.011

    CrossRef Google Scholar

    [23] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    Google Scholar

    [24] Ludwig K R. Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publications, 2003:1-73.

    Google Scholar

    [25] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439.

    Google Scholar

    [26] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe:Some Examples from the Western Alps[M]. Springer, Berlin Heidelberg, 2000, 49(16):1589-1604.

    Google Scholar

    [27] Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb age and metamorphism[J]. Chemical Geology, 2002, 184:123-138. doi: 10.1016/S0009-2541(01)00355-2

    CrossRef Google Scholar

    [28] Moeller A, O, Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland, SW Norway[J]. Geological Society Special Publications, 2003, 220:65-81. doi: 10.1144/GSL.SP.2003.220.01.04

    CrossRef Google Scholar

    [29] 宋彪, 乔秀夫.辽北辉绿岩墙(床)群及二道沟组玄武岩锆石年龄及其构造意义[J].地学前缘, 2008, 15(3):250-262.

    Google Scholar

    [30] 宋彪.用SHRIMP测定锆石U-Pb年龄的工作方法[J].地质通报, 2015, 34(10):1777-1788. doi: 10.3969/j.issn.1671-2552.2015.10.002

    CrossRef Google Scholar

    [31] Wilson M. Igneous Petrogenesis[M]. London:Allen and Unwin, 1989:1-164.

    Google Scholar

    [32] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [33] Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. New York:Longman Group UK Ltd, 1993:1-352.

    Google Scholar

    [34] Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust:Treaties on Geochemistry. Oxfor Elsevi-er Pergamon, 2003:1-64.

    Google Scholar

    [35] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [36] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, 1984:63-114.

    Google Scholar

    [37] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [38] 卢书炜, 任建德, 白国典, 等.西藏尼玛县南部中晚侏罗世松木果强过铝花岗岩带的发现及其意义[J].中国地质, 2006, 33(2):332-339.

    Google Scholar

    [39] 刘伟, 李奋其, 袁四化, 等.西藏中冈底斯带措勤地区则弄群熔结凝灰岩锆石LA-ICP-MS U-Pb年龄[J].地质通报, 2010, 29(7):1009-1016.

    Google Scholar

    [40] 张予杰, 刘伟, 朱同兴, 等.西藏申扎县买巴地区早白垩世侵入岩锆石U-Pb年龄及地球化学[J].中国地质, 2014, 41(1):50-60.

    Google Scholar

    [41] 丁慧霞, 张泽明, 向华, 等.青藏高原拉萨地体北部早白垩世火山岩的成因及意义[J].岩石学报, 2015, 31(5):1247-1267.

    Google Scholar

    [42] 黄瀚霄, 李光明, 刘波, 等.西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征:对成因及其成矿构造背景的指示[J].地球学报, 2012, 33(4):424-434.

    Google Scholar

    [43] 韩吟文, 马振东.地球化学[M].北京:地质出版社, 2003:181-212.

    Google Scholar

    [44] Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 1994, 58:4127-414. doi: 10.1016/0016-7037(94)90269-0

    CrossRef Google Scholar

    [45] Harris N B W, Lnger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110:46-56. doi: 10.1007/BF00310881

    CrossRef Google Scholar

    [46] Zorpi M J, Coulon C, Orsini J B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids:A case-study in northern Sardinia, Italy[J]. Chemical Geology, 1991, 92:45-86. doi: 10.1016/0009-2541(91)90049-W

    CrossRef Google Scholar

    [47] Karsli O, Chen B, Aydin F, et al. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dolek and Saricicek Plutons, Eastern Turkey:Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting[J]. Lithos, 2007, 98:67-96. doi: 10.1016/j.lithos.2007.03.005

    CrossRef Google Scholar

    [48] Kaygusuz A, Aydincakir K. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey. Evidence of magma mixing, mingling and chemical equilibration[J]. Chemie der Erde, 2009, 69:247-277. doi: 10.1016/j.chemer.2008.08.002

    CrossRef Google Scholar

    [49] 张招崇, 董书云, 黄河, 等.西南天山二叠纪中酸性侵入岩的地质学和地球化学:岩石成因和构造背景[J].地质通报, 2009, 28(12):1827-1839. doi: 10.3969/j.issn.1671-2552.2009.12.015

    CrossRef Google Scholar

    [50] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748. doi: 10.1130/G22725.1

    CrossRef Google Scholar

    [51] Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the IndoAsian collision[J]. Earth-Science Reviews, 2012, 114(3/4):236-249.

    Google Scholar

    [52] 康志强, 许继峰, 董彦辉, 等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?[J].岩石学报, 2008, 24(2):303-314.

    Google Scholar

    [53] 康志强, 许继峰, 王宝弟, 等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 2010, 26(10):3106-3116.

    Google Scholar

    [54] 朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境火山岩约束[J].岩石学报, 2006, 22(3):534-546.

    Google Scholar

    [55] Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction?[J]. Geology, 2000, 28(6):535-538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2

    CrossRef Google Scholar

    黄柏鑫, 叶春林, 吕志伟, 等. 西藏扎布耶茶卡北地区四幅区域地质矿产调查报告. 2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(861) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint