2017 Vol. 36, No. 7
Article Contents

ZHAO Jianglin, ZENG Zhongcheng, HE Ningqiang, DU Biao, WANG Xing, YUAN Zhang. LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang[J]. Geological Bulletin of China, 2017, 36(7): 1129-1146.
Citation: ZHAO Jianglin, ZENG Zhongcheng, HE Ningqiang, DU Biao, WANG Xing, YUAN Zhang. LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang[J]. Geological Bulletin of China, 2017, 36(7): 1129-1146.

LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang

  • The Quanshuigou Formation volcanic rocks are located in northern Dahongliutan-Qitadaban area, western Kunlun Mountains, Xinjiang. The volcanic rocks are mainly composed of pyroxene andesite, pyroxene latite, and biotite trachyte. LA-ICPMS zircon dating indicates that the volcanic rocks were emplaced at 3.71 ±0.05Ma, suggesting that the crystallization age of the Quanshuigou Formation volcanic rocks is Neogene Pliocene. Geochemical analysis shows that major elements are characterized by high Al2O3 (13.56%~14.32%) and K2O (4.46%~5.79%), but low Na2O (3.68%~4.40%), TiO2 (1.09%~1.48%) and MgO (2.64%~5.18%), thus belonging to shoshonite series. In addition, they are enriched in total REE (550×10-6~612×10-6), and the samples are enriched in LREE (light rare earth elements) and depleted in HREE (heavy rare earth elements) with weak Eu anomalies (δEu=0.55~0.63). The chondrite-normalized REE patterns show rightly-inclined type, and the olcanic rocks have rich LILE(such as K, Rb, Ba, Th, U and Pb)but poor high field strength elements (such as Ti, Nb, Ta, and P). They have typical characteristics of orogenic potassic volcanic rocks.Studies show that the rocks were formed by the partial melting enriched mantle sources mixed with a small amount of materials of the upper crust. Combined with the data of regional geology, the authors hold that the formation of the orogenic belt was related to NNW-striking thrust nappe of Karakoram-Tianshuihai along Dahongliutan-Quanshuigou fault and TianshuihaiGuozhacuo fault in the Pliocene. At that time, the volcanic rocks were formed.

  • 加载中
  • [1] 邓万明.西藏阿里北部的新生代火山岩[J].岩石学报, 1989, 5(3): 1-11.

    Google Scholar

    [2] 邓万明.中昆仑造山带钾玄质火山岩的地质地球化学和时代[J].地质科学, 1991, (3): 193-206.

    Google Scholar

    [3] 邓万明.青藏高原北部新生代板内火山岩[M].北京:地质出版社, 1998: 86-150.

    Google Scholar

    [4] 赖绍聪.青藏高原新生代埃达克质岩的厘定及其意义[J].地学前缘, 2003, 10(4): 407-415.

    Google Scholar

    [5] 迟效国, 董春艳, 刘建峰, 等.青藏高原高Mg#和低Mg#两类钾质-超钾质火山岩及其源区性质[J].岩石学报, 2006, 3: 595-602. doi: 10.3321/j.issn:1000-0569.2006.03.008

    CrossRef Google Scholar

    [6] 刘嘉麒.中国火山[M].北京:科学出版社, 1999: 42-77.

    Google Scholar

    [7] Arnaud N O, Vidal P H, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications [J]. Earth and Planetary Science Letters, 1992, 111: 351-367. doi: 10.1016/0012-821X(92)90189-3

    CrossRef Google Scholar

    [8] 丁林, 张进江, 周勇, 等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报, 1999, 15 (1): 408-421.

    Google Scholar

    [9] 朱弟成, 潘桂棠, 莫宣学, 等.青藏高原及邻区新生代火山岩SrNd-Pb同位素特征[J].沉积与特提斯地质, 2003, 23(3): 1-11.

    Google Scholar

    [10] 宁维坤, 迟效国, 刘建峰, 等.青藏高原北部黑石北湖新生代钾质火山岩的成因[J].地质通报, 2009, 9: 1355-1360. doi: 10.3969/j.issn.1671-2552.2009.09.027

    CrossRef Google Scholar

    [11] 李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J].地质地球化学, 2000, 28(2): 38-44.

    Google Scholar

    [12] 谭富文, 潘桂棠, 徐强, 等.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志, 2000, 19(2): 121-130.

    Google Scholar

    [13] Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40: 1399-1424. doi: 10.1093/petroj/40.9.1399

    CrossRef Google Scholar

    [14] Li X H, Zhou H W, Chung S L, et al. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic magmatism in SE Tibet[J]. Int. Geol. Rev., 2002, 44: 559-574. doi: 10.2747/0020-6814.44.6.559

    CrossRef Google Scholar

    [15] Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865. doi: 10.1093/petrology/egg061

    CrossRef Google Scholar

    [16] Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenozoic andesite-dacite association from the Hoh Xil Region, Tibeltan Plateau[J]. Int. Geol. Rev., 2003, 45(11): 998-1019. doi: 10.2747/0020-6814.45.11.998

    CrossRef Google Scholar

    [17] Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    CrossRef Google Scholar

    [18] 陈建林, 许继峰, 康志强, 等.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J].岩石学报, 2006, (3): 585-594.

    Google Scholar

    [19] 刘栋, 赵志丹, 朱弟成, 等.青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J].岩石学报, 2011, 7: 2045-2059.

    Google Scholar

    [20] Turner S, Arnaud N. Post collision, shoshonitic volcanism on the plateau: Implications for convective thinning of the lithosphere and the spurce of ocean island basalts[J]. J. Petrol., 1996, 37(1): 45-71. doi: 10.1093/petrology/37.1.45

    CrossRef Google Scholar

    [21] Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [22] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3

    CrossRef Google Scholar

    [23] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    Google Scholar

    [24] Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [25] Peccerillo A, Taylor S R. Chemistry of eocene calc-alka line rocks from the Kasta-monu area, Northern Turkey[J]. Contr. Miner. Petr., 1976, 58: 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [26] 王碧香.国际火成岩分类命名研究现状[J].地质科技情报, 1990, 4: 30-47.

    Google Scholar

    [27] 邓晋福, 刘翠, 冯艳芳, 等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评, 2015, 4: 717-734.

    Google Scholar

    [28] 邓晋福, 罗照华, 苏尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004: 1-381.

    Google Scholar

    [29] Turner S, Arnaud N, Liu J, et al. Post-Collision, shoshonitic volcanism on the Tibetan plateau:Implication for convective thinning of the lithosphere and source of ocean island basalts[J]. J. Petrol., 1996, 37(1): 45-71. doi: 10.1093/petrology/37.1.45

    CrossRef Google Scholar

    [30] Wilson M, Bianchini G. Tertiary-Quaternary magmatism within the Mediterranean and sorrounding regions[J]. Geological Society, London. Special Publications, 1999, 156: 141-168.

    Google Scholar

    [31] Gill R C O, Aparicio A, Azzouzi M E, et al. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes[J]. Lithos, 2004, 78: 363-388. doi: 10.1016/j.lithos.2004.07.002

    CrossRef Google Scholar

    [32] Duggen S, Hoevnle K, Bogaard P V D, et al. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Me-terranean: Evidence for continental edge delamination of subconti-nental lithosphere[J]. J. Petrol., 2005, 46(6): 1155-1201.

    Google Scholar

    [33] 赵振明, 计文化, 李荣社, 等.青藏高原北部巴颜喀拉与东昆仑地区新近纪以来火山岩的地球化学特征及其成因[J].地球化学, 2009, 38(3): 205 -230.

    Google Scholar

    [34] 王保弟, 陈陵康, 许继峰, 等.拉萨地块麻江地区具有"超钾质"成分的钾质火山岩的识别及成因[J].岩石学报, 2011, 6: 1662-1674.

    Google Scholar

    [35] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.

    Google Scholar

    [36] 邓晋福, 莫宣学, 罗照华, 等.火成岩构造组合与壳-幔成矿系统[J].地学前缘, 1999, 6(2): 259-270.

    Google Scholar

    [37] Fitton J G, James D, Kempton P D, et al. The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the Western Unite State[J]. J. Petrol., 1988, Special lithosphere issue: 331-349. http://petrology.oxfordjournals.org/content/Special_Volume/1/331.short

    Google Scholar

    [38] Temel A, Gondogdu M N. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 1998, 85: 327-354. doi: 10.1016/S0377-0273(98)00062-6

    CrossRef Google Scholar

    [39] Rittmann A. Stable mineral assemllaqes of iqueous rocks[M]. New York, 1973.

    Google Scholar

    [40] Pearce T H, Gorman B E, Birkett T C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Earth Planet. Sci. Lett., 1977, 36: 121-132. doi: 10.1016/0012-821X(77)90193-5

    CrossRef Google Scholar

    [41] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 2007, 1: 92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011

    CrossRef Google Scholar

    [42] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J. Petrol., 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [43] 孙书勤, 汪云亮, 张成江.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质论评, 2003, 49(1): 40-47.

    Google Scholar

    [44] Defant M J, Drummond M S. Derivation of some modern are magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [45] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219(1/3): 177-189.

    Google Scholar

    [46] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the An dean Austral Volcanic Zone[J]. Contrib. Mineral. Petrol., 1996, 123: 263-281. doi: 10.1007/s004100050155

    CrossRef Google Scholar

    [47] Conticelli S, Pecerillo A. Petrology and geochemistry of potassic and ultrapo tassic volcanism in Central Italy petrogenesis and inference on the evolution of the mantle source[J]. Lithos, 1992, 28(3): 221-240.

    Google Scholar

    [48] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [49] Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zenland: Granitoid magmas fored by melting of matic lithosphere[J]. J. Geol. Soc., 1995, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689

    CrossRef Google Scholar

    [50] 张雪梅, 孙若昧, 滕吉文.青藏高原及其邻区地壳、岩石圈和软流层厚度研究[J].科学通报, 2007, 3: 332-338. doi: 10.3321/j.issn:0023-074X.2007.03.014

    CrossRef Google Scholar

    [51] French W J, Cameron E P. Calculation of the tempera-ture of crystallization of silicates from basaltic melts[J]. Mineral, 1981, 44: 19-26.

    Google Scholar

    [52] Yorder H S, Tilley C E. Origin of basalt magmas: an experiment study of natural and synthetic rock systems[J]. J. Petrol., 1962, 3: 342-532. doi: 10.1093/petrology/3.3.342

    CrossRef Google Scholar

    [53] Ninkovich D P, Hays J D. Mediterranean island arcs and origin of high potash volcanoes[J]. Earth and Planetary Science Letters, 1972, 16: 331-345. doi: 10.1016/0012-821X(72)90151-3

    CrossRef Google Scholar

    [54] Chung S L, Chu M F, Ji J Q, et al. The nature and timing of crustal thickening in Sourthern Tibet:Geochemical and zircon Hf isotopic constraints from post-collisional adakites[J]. Tectonophysics, 2009, 477(1/2): 36-48.

    Google Scholar

    [55] 吴福元, 黄宝春, 叶凯, 等.青藏高原造山带的垮塌与高原隆升[J].岩石学报, 2008, 1: 1-30.

    Google Scholar

    [56] Mo X X, Zhao Z D, Zhou S. Evidence for timing of the intiation of India-Asia collision from igneous rocks in Tibet[J]. Eos Transactions.American Geophysical Union, 2002, 83(47): F1003.

    Google Scholar

    [57] 陈正乐, 万景林, 王小凤, 等.阿尔金断裂带8Ma左右的快速走滑及其地质意义[J].地球学报, 2002, 8: 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002

    CrossRef Google Scholar

    [58] Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Provinee, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Seience Letters, 2007, 258: 293-306. doi: 10.1016/j.epsl.2007.03.042

    CrossRef Google Scholar

    [59] 李海兵, 许志琴, 杨经绥, 等.阿尔金断裂带最大累积走滑位移量——900km?[J].地质通报, 2007, 26(10): 1288-1298. doi: 10.3969/j.issn.1671-2552.2007.10.007

    CrossRef Google Scholar

    [60] 肖爱芳, 黎敦朋.新藏公路奇台达坂晚中新世火山岩的发现及40Ar-39Ar定年[J].地质通报, 2010, 21: 237-242. doi: 10.3969/j.issn.1671-2552.2010.02.007

    CrossRef Google Scholar

    [61] Zheng H, Powell C, An Z, et al. Pliocene uPlift of the northern Tibetan Plateau[J]. Geology, 2007, 28(8): 715-718.

    Google Scholar

    [62] 黎敦朋, 赵越, 胡健民, 等.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束[J].岩石学报, 2007, 23(5): 900-910.

    Google Scholar

    [63] Sun J M, Liu T S. The Age of the Taklimakan Desert[J]. Science, 2006, 312: 1621. doi: 10.1126/science.1124616

    CrossRef Google Scholar

    [64] 万渝生, 罗照华, 李莉. 3.8Ma:青藏高原年轻碱性玄武岩错石离子探针U-Pb年龄测定[J].地球化学, 2004, 33(5): 442-446.

    Google Scholar

    [65] 王权, 杨五宝, 张振福, 等.藏西北黑石北湖一带新近纪火山岩的特征及构造意义[J].地质通报, 2005, 1: 80-86. doi: 10.3969/j.issn.1671-2552.2005.01.012

    CrossRef Google Scholar

    [66] 李金冬, 柏道远, 王先辉.藏北蚕眉山地区火山岩和夷平面的时代[J].地质通报, 2004, 7: 670-675. doi: 10.3969/j.issn.1671-2552.2004.07.006

    CrossRef Google Scholar

    陕西省地质调查院. 新疆1: 25万阿克萨依湖幅I44C001002区域地质调查项目报告. 2006.

    Google Scholar

    陕西省地质调查院. 新疆1: 5万I44E002006等4幅区域地质调查报告. 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(3)

Article Metrics

Article views(789) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint