Citation: | YANG Tao, ZHAO Xinmin, ZHANG Zhouyuan, DU Yalong, LI Zhiming, SONG Zhongbao, ZHANG Le, ZHANG Bin, WANG Xiaopeng, JIANG Anding, ZHAN Xiaodi, WANG Yu. Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance[J]. Geological Bulletin of China, 2017, 36(7): 1147-1157. |
The Tawenchahanxi Fe-polymetallic deposit is another typical skarn type deposit newly discovered in the Qimantag metallogenic belt of East Kunlun Mountains. Using LA-ICP-MS zircon U-Pb isotope dating, the authors obtained the petrogenetic age of the granitic diorite porphyry (236.0±2.3Ma.) which is the main ore-forming rock mass in the mine. The result is in agreement with previous isochron age of 229.9±3.5Ma of the muscovite separated from skarn magnetite ore by the 40Ar-39Ar incremental heating method. Petrologic and geochemical data indicates that it is a peraluminous granite and belongs to the I type high K calc-alkaline series, enriched in LREE and HFSE but depleted in HREE and LILE. The rare earth patterns of rocks/chondrite show medium negative Eu anomalies. In addition, the diorite porphyry might have been formed at the collision-post collision stage of Late Paleozoic to Early Mesozoic tectono-magmatic cycle, which was also related to regional large-scale mantle magma underplating and crust-mantle magma mixing.
[1] | 杨经绥, 许志琴, 李海兵, 等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志, 2005, 24(5): 369-380. |
[2] | 朱迎堂, 田景春, 白生海, 等.青海省石炭纪-三叠纪岩相古地理[J].古地理学报, 2009, 11(4): 384-392. |
[3] | 袁万明, 莫宣学, 喻学慧, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2): 203-211. |
[4] | 李荣社, 计文化, 杨永成, 等.昆仑山及邻区地质[M].北京:地质出版社, 2008: 1-400. |
[5] | Liu H T. Petrology, geochemistry and geochronology of Late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis[J]. Geochemical Journal, 2005, 39 (1):1-20. doi: 10.2343/geochemj.39.1 |
[6] | Yuan C, Sun M, Xiao W J, et al. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone[J]. International Journal of Earth Sciences, 2009, 98(6):1489-1510. doi: 10.1007/s00531-008-0335-y |
[7] | 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2): 665-678. |
[8] | Anderson T. Correlation of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79. |
[9] | Ludwig K R. User' s Manual for Isoplot3.0: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, (4):1-66. |
[10] | Streckeisen A L. Classification of the common igneous rocks by means of their chemical composition: A provisional attmpt[J]. Neues Jahrbuch fur Mineralogie, Monatshefte, 1976, 1: 1-15. |
[11] | Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9 |
[12] | Rickwood P C. Boundary lines within petrologic diagrams which use oxides major and minor elements[J]. Lithos, 1989, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5 |
[13] | Wolf M B, London D. Apatite dissolution into peraluminoushaplogranite melts: An experimental study of solubilities and mechanism[J]. Geochim. Cosmochim. Acta., 1994, 58:4127-4145. doi: 10.1016/0016-7037(94)90269-0 |
[14] | Chappell B W, White A J. Two contrasting granite types: 25years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x |
[15] | Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective[J]. Rev. Geophy., 1995, 33: 267-309. doi: 10.1029/95RG01302 |
[16] | Barth M G, McDonough W F, Rndnick R I. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213. |
[17] | Miller C, Schuster R, Klotzli U, et al. Postcollisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Jour. Petrol., 1999, 40: 1399-1424. doi: 10.1093/petroj/40.9.1399 |
[18] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean BasinsSoc. London Spcc. Pub., 1989, 42: 313-345. |
[19] | 吴荣新.锆石阴极发光和U-Pb年龄特征研究[J].安徽理工大学学报(自然科学版), 2008, 28(4): 1-7. |
[20] | 田承盛, 丰成友, 李军红, 等.青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义[J].矿床地质, 2013, 32(1): 169-176. |
[21] | Kemp A S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotope in zircon[J]. Science, 2007, 315: 980-983. doi: 10.1126/science.1136154 |
[22] | Collins W J, Richards S W. Geodynamic significance of S-type granite in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559-562. doi: 10.1130/G24658A.1 |
[23] | 张旗.大陆花岗岩的地球动力学意义[J].岩石矿物学杂志, 2014, 33(4): 785-795. |
[24] | 肖龙, Rapp R, 许继峰.深部过程对埃达克质岩石成分的制约[J].岩石学报, 2004, 20(2): 219-228. |
[25] | Pearce J A, Harris N B W, Tindle A J. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956 |
[26] | 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. |
[27] | 罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6): 292-297. |
① | 王军, 曹成德, 汪成萍, 等. 青海省格尔木市那陵格勒河西M5异常区多金属矿调查评价报告. 2014. |
② | 王秉璋, 王涛, 陈发彬, 等. 青海省东昆仑祁漫塔格火成岩类成矿作用及找矿靶区优选报告. 2012. |
Schematic geological and mineral distribution map of Qimantag area, East Kunlun Mountains
Interpretation map of geology and geophysical exploration in the Tawenchahanxi mine
QAP and TAS classification diagrams
K2O-SiO2 discrimination diagram of granites in the mine
Trace elements distribution patterns of the granite mass in the mine
CL images, measured points and age data 206Pb/238U of zircon from granitic diorite porphyry
Zircon U-Pb concordia diagram (a) and 206Pb/238U age spectrum (b) from granitic diorite porphyry
Yb-Ta (a) and (Yb+Ta)-Rb (b) discrimination diagrams showing tectonic setting