2017 Vol. 36, No. 7
Article Contents

YANG Tao, ZHAO Xinmin, ZHANG Zhouyuan, DU Yalong, LI Zhiming, SONG Zhongbao, ZHANG Le, ZHANG Bin, WANG Xiaopeng, JIANG Anding, ZHAN Xiaodi, WANG Yu. Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance[J]. Geological Bulletin of China, 2017, 36(7): 1147-1157.
Citation: YANG Tao, ZHAO Xinmin, ZHANG Zhouyuan, DU Yalong, LI Zhiming, SONG Zhongbao, ZHANG Le, ZHANG Bin, WANG Xiaopeng, JIANG Anding, ZHAN Xiaodi, WANG Yu. Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance[J]. Geological Bulletin of China, 2017, 36(7): 1147-1157.

Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance

More Information
  • The Tawenchahanxi Fe-polymetallic deposit is another typical skarn type deposit newly discovered in the Qimantag metallogenic belt of East Kunlun Mountains. Using LA-ICP-MS zircon U-Pb isotope dating, the authors obtained the petrogenetic age of the granitic diorite porphyry (236.0±2.3Ma.) which is the main ore-forming rock mass in the mine. The result is in agreement with previous isochron age of 229.9±3.5Ma of the muscovite separated from skarn magnetite ore by the 40Ar-39Ar incremental heating method. Petrologic and geochemical data indicates that it is a peraluminous granite and belongs to the I type high K calc-alkaline series, enriched in LREE and HFSE but depleted in HREE and LILE. The rare earth patterns of rocks/chondrite show medium negative Eu anomalies. In addition, the diorite porphyry might have been formed at the collision-post collision stage of Late Paleozoic to Early Mesozoic tectono-magmatic cycle, which was also related to regional large-scale mantle magma underplating and crust-mantle magma mixing.

  • 加载中
  • [1] 杨经绥, 许志琴, 李海兵, 等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志, 2005, 24(5): 369-380.

    Google Scholar

    [2] 朱迎堂, 田景春, 白生海, 等.青海省石炭纪-三叠纪岩相古地理[J].古地理学报, 2009, 11(4): 384-392.

    Google Scholar

    [3] 袁万明, 莫宣学, 喻学慧, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2): 203-211.

    Google Scholar

    [4] 李荣社, 计文化, 杨永成, 等.昆仑山及邻区地质[M].北京:地质出版社, 2008: 1-400.

    Google Scholar

    [5] Liu H T. Petrology, geochemistry and geochronology of Late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis[J]. Geochemical Journal, 2005, 39 (1):1-20. doi: 10.2343/geochemj.39.1

    CrossRef Google Scholar

    [6] Yuan C, Sun M, Xiao W J, et al. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone[J]. International Journal of Earth Sciences, 2009, 98(6):1489-1510. doi: 10.1007/s00531-008-0335-y

    CrossRef Google Scholar

    [7] 丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2): 665-678.

    Google Scholar

    [8] Anderson T. Correlation of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    Google Scholar

    [9] Ludwig K R. User' s Manual for Isoplot3.0: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, (4):1-66.

    Google Scholar

    [10] Streckeisen A L. Classification of the common igneous rocks by means of their chemical composition: A provisional attmpt[J]. Neues Jahrbuch fur Mineralogie, Monatshefte, 1976, 1: 1-15.

    Google Scholar

    [11] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [12] Rickwood P C. Boundary lines within petrologic diagrams which use oxides major and minor elements[J]. Lithos, 1989, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [13] Wolf M B, London D. Apatite dissolution into peraluminoushaplogranite melts: An experimental study of solubilities and mechanism[J]. Geochim. Cosmochim. Acta., 1994, 58:4127-4145. doi: 10.1016/0016-7037(94)90269-0

    CrossRef Google Scholar

    [14] Chappell B W, White A J. Two contrasting granite types: 25years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x

    CrossRef Google Scholar

    [15] Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective[J]. Rev. Geophy., 1995, 33: 267-309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    [16] Barth M G, McDonough W F, Rndnick R I. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213.

    Google Scholar

    [17] Miller C, Schuster R, Klotzli U, et al. Postcollisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Jour. Petrol., 1999, 40: 1399-1424. doi: 10.1093/petroj/40.9.1399

    CrossRef Google Scholar

    [18] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean BasinsSoc. London Spcc. Pub., 1989, 42: 313-345.

    Google Scholar

    [19] 吴荣新.锆石阴极发光和U-Pb年龄特征研究[J].安徽理工大学学报(自然科学版), 2008, 28(4): 1-7.

    Google Scholar

    [20] 田承盛, 丰成友, 李军红, 等.青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义[J].矿床地质, 2013, 32(1): 169-176.

    Google Scholar

    [21] Kemp A S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotope in zircon[J]. Science, 2007, 315: 980-983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    [22] Collins W J, Richards S W. Geodynamic significance of S-type granite in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559-562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    [23] 张旗.大陆花岗岩的地球动力学意义[J].岩石矿物学杂志, 2014, 33(4): 785-795.

    Google Scholar

    [24] 肖龙, Rapp R, 许继峰.深部过程对埃达克质岩石成分的制约[J].岩石学报, 2004, 20(2): 219-228.

    Google Scholar

    [25] Pearce J A, Harris N B W, Tindle A J. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [26] 莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414.

    Google Scholar

    [27] 罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6): 292-297.

    Google Scholar

    王军, 曹成德, 汪成萍, 等. 青海省格尔木市那陵格勒河西M5异常区多金属矿调查评价报告. 2014.

    Google Scholar

    王秉璋, 王涛, 陈发彬, 等. 青海省东昆仑祁漫塔格火成岩类成矿作用及找矿靶区优选报告. 2012.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1049) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint