2017 Vol. 36, No. 7
Article Contents

XU Tong, CHEN Qingmin, GUO Qiming, ZHANG Shuanhou, MAO Youliang, WANG Qiang. Age and geochemical features of the Early Devonian Xiangquan A-type syenogranites from Baoji area at the conjunction of Qinling and Qilian Orogen and their tectonic significance[J]. Geological Bulletin of China, 2017, 36(7): 1118-1128.
Citation: XU Tong, CHEN Qingmin, GUO Qiming, ZHANG Shuanhou, MAO Youliang, WANG Qiang. Age and geochemical features of the Early Devonian Xiangquan A-type syenogranites from Baoji area at the conjunction of Qinling and Qilian Orogen and their tectonic significance[J]. Geological Bulletin of China, 2017, 36(7): 1118-1128.

Age and geochemical features of the Early Devonian Xiangquan A-type syenogranites from Baoji area at the conjunction of Qinling and Qilian Orogen and their tectonic significance

More Information
  • Xiangquan syengranites are located in Baoji area at the conjunction of Qinling and Qilian Orogen, and their LA-ICPMS zircon U-Pb geochronological and petrogeochemical studies were conducted in this paper. The results show that the zircon 206Pb/238Pb weighted average age of Xiangquan syengranites is 410±5Ma (MSWD=0.20, n=18), indicating that the crystallization age of the syengranites is Early Devonian. Xiangquan syengranites are high in SiO2 (SiO2=69.63%~73.94%), K2O (K2O=4.24%~4.88%, K2O/Na2O=1.23~1.44), and TFe2O3 (TFe2O3=2.10%~3.70%, TFe2O3/MgO=3.88~6.84), but low in MgO (MgO=0.31%~0.94%) and P2O5(P2O5=0.08%~0.21%), belonging to high-K calc-alkaline series with metaluminous features. In addition, they are enriched in total REE (318×10-6~499×10-6), with obvious negative Eu anomaly (δEu=0.37~0.46). The trace elements show enrichement of Rb, Th, Zr, Sm and Ga (10000×Ga/Al=2.59~2.93), depletion of Ba, Nb, Ta and Sr, with the characteristics of A-type granites on the whole. Combined with regional data, the authors hold that the Xiangquan syenogranites were formed in a post-orogenic tectonic setting and derived from partially melted felsic crust under low pressures.

  • 加载中
  • [1] 王涛.花岗岩混合成因研究及大陆动力学意义[J].岩石学报, 2000, 16(2): 161-168.

    Google Scholar

    [2] 肖庆辉, 邢作云, 张星, 等.当代花岗岩研究的几个重要前沿[J].地学前缘, 2003, 10(3): 222-229.

    Google Scholar

    [3] 张宏飞, 靳兰兰, 张利, 等.西秦岭花岗岩类地球化学和Pb-SrNd同位素组成对基底性质及其构造属性的限制[J].中国科学(D辑), 2005, 35(10): 914-926. doi: 10.3969/j.issn.1674-7240.2005.10.002

    CrossRef Google Scholar

    [4] 张成立, 王涛, 王晓霞.秦岭造山带早中生代花岗岩成因及其构造环境[J].高校地质学报, 2008, 14(3): 304-316.

    Google Scholar

    [5] Zhang H F, Zhang B R, Nigel Harris, et al. U-Pb zircon HRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilianorogenic belt, China: Constraints on petrogenesis and tectonicaffinity[J]. Journal of Asian Earth Sciences, 2006, 27: 751-764. doi: 10.1016/j.jseaes.2005.07.008

    CrossRef Google Scholar

    [6] 卢欣祥, 尉向东, 肖庆辉.秦岭环斑花岗岩的年代学研究及其意义[J].高校地质学报, 1999, 5(4): 372-377.

    Google Scholar

    [7] 王洪亮, 何世平, 陈隽璐, 等.北秦岭西段红花铺俯冲性侵入岩LA-ICP-MS定年及其地质意义[J].现代地质, 2006, 20(4): 536-564.

    Google Scholar

    [8] 裴先治, 孙仁奇, 丁仨平, 等.陇东地区阎家店闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].中国地质, 2007, 34(1): 8-16.

    Google Scholar

    [9] 裴先治, 刘战庆, 丁仨平, 等.甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J].地球科学进展, 2007, 22(8): 818-827.

    Google Scholar

    [10] 裴先治, 丁仨平, 张国伟, 等.西秦岭北缘新元古代花岗质片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质学报, 2007, 81(6): 773-784.

    Google Scholar

    [11] 何世平, 王洪亮, 徐学义, 等.北祁连东段红土堡基性火山岩锆石LA-ICP-MS U-Pb年代学及其地质意义[J].地球科学进展, 2007, 22(2): 143-151.

    Google Scholar

    [12] 陈隽璐, 李好斌, 王洪亮, 等.秦祁结合部位王家岔石英闪长岩体锆石LA-ICP-MS定年及地质意义[J].吉林大学学报(地球科学版), 2007, 37(3): 423-431.

    Google Scholar

    [13] 陈隽璐, 徐学义, 王洪亮, 等.北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J].现代地质, 2008, 22(1): 63-70.

    Google Scholar

    [14] 王婧, 张宏飞, 徐旺春, 等.西秦岭党川地区花岗岩的成因及其构造意义[J].地球科学-中国地质大学学报, 2008, 33(4): 474-486.

    Google Scholar

    [15] 刘树文, 杨朋涛, 李秋根, 等.秦岭中段印支期花岗质岩浆作用与造山过程[J].吉林大学学报(地球科学版), 2011, 41(6): 1928-1943.

    Google Scholar

    [16] 王银川, 裴先治, 李佐臣, 等.北祁连造山带东端张家川地区长宁驿中元古代花岗质片麻岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J].地质通报, 2012, 31(10): 1576-1587. doi: 10.3969/j.issn.1671-2552.2012.10.004

    CrossRef Google Scholar

    [17] 王银川. 秦祁结合部位加里东期碰撞-后碰撞型花岗岩地质特征及构造意义[D]. 长安大学硕士学位论文, 2013: 1-86.http://cdmd.cnki.com.cn/Article/CDMD-11941-1014022221.htm

    Google Scholar

    [18] 魏方辉, 裴先治, 李瑞保, 等.甘肃天水地区早古生代黄门川花岗闪长岩体LA-ICP-MS锆石定年及构造意义[J].地质通报, 2012, 31(9): 1496-1509.

    Google Scholar

    [19] 魏方辉. 北祁连造山带东端早古生代物质组成、变形特征及其构造演化过程[D]. 长安大学硕士学位论文, 2013: 1-130.http://cdmd.cnki.com.cn/Article/CDMD-11941-1014022227.htm

    Google Scholar

    [20] 李佐臣, 裴先治, 李瑞保, 等.西秦岭糜署岭花岗岩体年代学、地球化学特征及其构造意义[J].岩石学报, 2013, 29(8): 2617-2634.

    Google Scholar

    [21] 任厚州, 裴先治, 刘成军, 等.西秦岭天水地区太白花岗岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地质通报, 2014, 33(7): 1041-1054.

    Google Scholar

    [22] 吕星球. 北秦岭太白花岗岩体年代学和成因研究[D]. 中国地质大学(北京)硕士学位论文, 2015: 1-78.http://cdmd.cnki.com.cn/Article/CDMD-11415-1015385448.htm

    Google Scholar

    [23] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    [24] Siebel W, Blaha U, Chen F K, et al. Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[J]. International Journal of Earth Sciences, 2005, 94(1): 8-23. doi: 10.1007/s00531-004-0445-0

    CrossRef Google Scholar

    [25] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of igneous rocks and glossary of terms[M]. Oxford: Blackwell, 1989.

    Google Scholar

    [26] Rickwood P C. Boundary lines within petologic diagrams which use oxides of major and minor element[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [27] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C]// Sunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geol. Soc. Spec. Publ., 1989, 42: 313-345.

    Google Scholar

    [28] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [29] 贾小辉, 王强, 唐功建. A型花岗岩的研究进展及意义[J].大地构造与成矿学, 2009, 33(3): 465-480.

    Google Scholar

    [30] 王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4): 297-306.

    Google Scholar

    [31] Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28: 151-179. doi: 10.1016/0024-4937(92)90029-X

    CrossRef Google Scholar

    [32] Mushkin A, Navon O, Halicz L, et al. The petrogenesis of A-type magmas from the Amram Massif, southern Israel[J]. Journal of Petrology, 2003, 44: 815-832. doi: 10.1093/petrology/44.5.815

    CrossRef Google Scholar

    [33] Clemens J D, Holloway J R, White A J R. Origin of an A-type granite: Experimental constrains[J]. American Mineralogist, 1986, 71: 317-324.

    Google Scholar

    [34] Harris C, Marsh J S, Milner S C. Petrology of the alkaline core of the essum igneous complex, Namibia: Evidence for the progressively decreasing effect of crustal contamination[J]. Journal of Petrology, 1999, 40: 1377-1397. doi: 10.1093/petroj/40.9.1377

    CrossRef Google Scholar

    [35] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-NdHf isotopic evidence[J]. Lithos, 2006, 89: 89-106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    [36] Skjerlie K P, Johnston A D. Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites[J]. Geology, 1992, 20: 263-266. doi: 10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2

    CrossRef Google Scholar

    [37] Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25: 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2

    CrossRef Google Scholar

    [38] Creaser R A, Price R C, Wormald R J. A-type granites revisited: Assessment of a residual-source model[J]. Geology, 1991, 19: 163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    CrossRef Google Scholar

    [39] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [40] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6): 1217-1238.

    Google Scholar

    [41] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [42] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897 doi: 10.1038/nature03162

    CrossRef Google Scholar

    [43] Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite: Petrogenesis based on the Topsails igneous suite, Newfound land Appalachians[J]. Journal of Petrology, 1996, 37: 1463-1489. doi: 10.1093/petrology/37.6.1463

    CrossRef Google Scholar

    [44] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20: 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [45] Pearce J A. Sources and settings of granitic rock[J]. Episodes, 1996, 19(4): 120-125.

    Google Scholar

    [46] 裴先治, 丁仨平, 李佐臣, 等.西秦岭北缘关子镇蛇绿岩的形成时代:来自辉长岩中LA-ICP-MS锆石U-Pb年龄的证据[J].地质学报, 2007, 81(11): 1550-1561. doi: 10.3321/j.issn:0001-5717.2007.11.010

    CrossRef Google Scholar

    [47] 董云鹏, 杨钊, 张国伟, 等.西秦岭关子镇蛇绿岩地球化学及其大地构造意义[J].地质学报, 2008, 82(9): 1186-1194.

    Google Scholar

    [48] 裴先治, 刘会彬, 丁仨平, 等.西秦岭天水地区李子园群变质火山岩的地球化学特征及其地质意义[J].大地构造与成矿学, 2006, 30(2): 193-205.

    Google Scholar

    [49] 闫全人, 王宗起, 陈隽璐, 等.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义[J].地质学报, 2007, 81(4): 488-500.

    Google Scholar

    [50] 闫全人, 陈隽璐, 王宗起, 等.北秦岭小王涧枕状熔岩中淡色侵入岩的地球化学特征、SHRIMP年龄及地质意义[J].中国科学(D辑), 2007, 37(10): 1301-1313.

    Google Scholar

    [51] 李王晔. 西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究——对特提斯洋演化的制约[D]. 中国科学技术大学博士学位论文, 2008: 1-124.http://cdmd.cnki.com.cn/Article/CDMD-10358-2008091811.htm

    Google Scholar

    [52] Pei X Z, Li Z C, Liu H B, et al. Geochemical characteristics and zircon U-Pb isotopic ages of island-arc basic igneous complexes from the Tianshui area in West Qinling[J]. Front. Earth Sci. China, 2007, 1(1): 49-59. doi: 10.1007/s11707-007-0008-3

    CrossRef Google Scholar

    [53] 胡波. 甘肃天水地区清水-张家川早古生代变质火山岩岩石地球化学特征及其构造意义[D]. 长安大学硕士学位论文, 2005: 1-75.http://cdmd.cnki.com.cn/article/cdmd-11941-2006030053.htm

    Google Scholar

    [54] 何艳红, 陈亮, 孙勇, 等.陇县地区新街片麻岩套锆石年龄及其地质意义[J].西北大学学报(自然科学版), 2005, 35(5): 625-632.

    Google Scholar

    长安大学地质调查研究院. 1: 25万天水市幅区域地质调查(修测)报告. 2004.

    Google Scholar

    陕西省地质调查院. 1: 25万宝鸡市幅区域地质调查(修测)报告. 2004.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(906) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint