Citation: | ZHAO Jianglin, ZENG Zhongcheng, HE Ningqiang, DU Biao, WANG Xing, YUAN Zhang. LA-ICP-MS zircon U-Pb ages, geochemical characteristics and geo-logical significance of the Neogene Quanshuigou Formation volcanic rocks in the north of Dahongliutan-Qitaidaban area, Xinjiang[J]. Geological Bulletin of China, 2017, 36(7): 1129-1146. |
The Quanshuigou Formation volcanic rocks are located in northern Dahongliutan-Qitadaban area, western Kunlun Mountains, Xinjiang. The volcanic rocks are mainly composed of pyroxene andesite, pyroxene latite, and biotite trachyte. LA-ICPMS zircon dating indicates that the volcanic rocks were emplaced at 3.71 ±0.05Ma, suggesting that the crystallization age of the Quanshuigou Formation volcanic rocks is Neogene Pliocene. Geochemical analysis shows that major elements are characterized by high Al2O3 (13.56%~14.32%) and K2O (4.46%~5.79%), but low Na2O (3.68%~4.40%), TiO2 (1.09%~1.48%) and MgO (2.64%~5.18%), thus belonging to shoshonite series. In addition, they are enriched in total REE (550×10-6~612×10-6), and the samples are enriched in LREE (light rare earth elements) and depleted in HREE (heavy rare earth elements) with weak Eu anomalies (δEu=0.55~0.63). The chondrite-normalized REE patterns show rightly-inclined type, and the olcanic rocks have rich LILE(such as K, Rb, Ba, Th, U and Pb)but poor high field strength elements (such as Ti, Nb, Ta, and P). They have typical characteristics of orogenic potassic volcanic rocks.Studies show that the rocks were formed by the partial melting enriched mantle sources mixed with a small amount of materials of the upper crust. Combined with the data of regional geology, the authors hold that the formation of the orogenic belt was related to NNW-striking thrust nappe of Karakoram-Tianshuihai along Dahongliutan-Quanshuigou fault and TianshuihaiGuozhacuo fault in the Pliocene. At that time, the volcanic rocks were formed.
[1] | 邓万明.西藏阿里北部的新生代火山岩[J].岩石学报, 1989, 5(3): 1-11. |
[2] | 邓万明.中昆仑造山带钾玄质火山岩的地质地球化学和时代[J].地质科学, 1991, (3): 193-206. |
[3] | 邓万明.青藏高原北部新生代板内火山岩[M].北京:地质出版社, 1998: 86-150. |
[4] | 赖绍聪.青藏高原新生代埃达克质岩的厘定及其意义[J].地学前缘, 2003, 10(4): 407-415. |
[5] | 迟效国, 董春艳, 刘建峰, 等.青藏高原高Mg#和低Mg#两类钾质-超钾质火山岩及其源区性质[J].岩石学报, 2006, 3: 595-602. doi: 10.3321/j.issn:1000-0569.2006.03.008 |
[6] | 刘嘉麒.中国火山[M].北京:科学出版社, 1999: 42-77. |
[7] | Arnaud N O, Vidal P H, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications [J]. Earth and Planetary Science Letters, 1992, 111: 351-367. doi: 10.1016/0012-821X(92)90189-3 |
[8] | 丁林, 张进江, 周勇, 等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征[J].岩石学报, 1999, 15 (1): 408-421. |
[9] | 朱弟成, 潘桂棠, 莫宣学, 等.青藏高原及邻区新生代火山岩SrNd-Pb同位素特征[J].沉积与特提斯地质, 2003, 23(3): 1-11. |
[10] | 宁维坤, 迟效国, 刘建峰, 等.青藏高原北部黑石北湖新生代钾质火山岩的成因[J].地质通报, 2009, 9: 1355-1360. doi: 10.3969/j.issn.1671-2552.2009.09.027 |
[11] | 李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J].地质地球化学, 2000, 28(2): 38-44. |
[12] | 谭富文, 潘桂棠, 徐强, 等.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志, 2000, 19(2): 121-130. |
[13] | Miller C, Schuster R, Klotzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 1999, 40: 1399-1424. doi: 10.1093/petroj/40.9.1399 |
[14] | Li X H, Zhou H W, Chung S L, et al. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic magmatism in SE Tibet[J]. Int. Geol. Rev., 2002, 44: 559-574. doi: 10.2747/0020-6814.44.6.559 |
[15] | Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865. doi: 10.1093/petrology/egg061 |
[16] | Lai S C, Liu C Y, Yi H S. Geochemistry and petrogenesis of Cenozoic andesite-dacite association from the Hoh Xil Region, Tibeltan Plateau[J]. Int. Geol. Rev., 2003, 45(11): 998-1019. doi: 10.2747/0020-6814.45.11.998 |
[17] | Wang Q, McDcermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1 |
[18] | 陈建林, 许继峰, 康志强, 等.青藏高原西部措勤县中新世布嘎寺组钾质火山岩成因[J].岩石学报, 2006, (3): 585-594. |
[19] | 刘栋, 赵志丹, 朱弟成, 等.青藏高原拉萨地块西部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J].岩石学报, 2011, 7: 2045-2059. |
[20] | Turner S, Arnaud N. Post collision, shoshonitic volcanism on the plateau: Implications for convective thinning of the lithosphere and the spurce of ocean island basalts[J]. J. Petrol., 1996, 37(1): 45-71. doi: 10.1093/petrology/37.1.45 |
[21] | Anderson T. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemcal Geology, 2002, 192(1/2): 59-79. |
[22] | Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/ggr.2004.28.issue-3 |
[23] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345. |
[24] | Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. J. Petrol., 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745 |
[25] | Peccerillo A, Taylor S R. Chemistry of eocene calc-alka line rocks from the Kasta-monu area, Northern Turkey[J]. Contr. Miner. Petr., 1976, 58: 63-81. doi: 10.1007/BF00384745 |
[26] | 王碧香.国际火成岩分类命名研究现状[J].地质科技情报, 1990, 4: 30-47. |
[27] | 邓晋福, 刘翠, 冯艳芳, 等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评, 2015, 4: 717-734. |
[28] | 邓晋福, 罗照华, 苏尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004: 1-381. |
[29] | Turner S, Arnaud N, Liu J, et al. Post-Collision, shoshonitic volcanism on the Tibetan plateau:Implication for convective thinning of the lithosphere and source of ocean island basalts[J]. J. Petrol., 1996, 37(1): 45-71. doi: 10.1093/petrology/37.1.45 |
[30] | Wilson M, Bianchini G. Tertiary-Quaternary magmatism within the Mediterranean and sorrounding regions[J]. Geological Society, London. Special Publications, 1999, 156: 141-168. |
[31] | Gill R C O, Aparicio A, Azzouzi M E, et al. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: geochemical and isotopic constraints on Neogene tectonic processes[J]. Lithos, 2004, 78: 363-388. doi: 10.1016/j.lithos.2004.07.002 |
[32] | Duggen S, Hoevnle K, Bogaard P V D, et al. Post-collisional transition from subduction-to intraplate-type magmatism in the westernmost Me-terranean: Evidence for continental edge delamination of subconti-nental lithosphere[J]. J. Petrol., 2005, 46(6): 1155-1201. |
[33] | 赵振明, 计文化, 李荣社, 等.青藏高原北部巴颜喀拉与东昆仑地区新近纪以来火山岩的地球化学特征及其成因[J].地球化学, 2009, 38(3): 205 -230. |
[34] | 王保弟, 陈陵康, 许继峰, 等.拉萨地块麻江地区具有"超钾质"成分的钾质火山岩的识别及成因[J].岩石学报, 2011, 6: 1662-1674. |
[35] | Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64. |
[36] | 邓晋福, 莫宣学, 罗照华, 等.火成岩构造组合与壳-幔成矿系统[J].地学前缘, 1999, 6(2): 259-270. |
[37] |
Fitton J G, James D, Kempton P D, et al. The role of lithospheric mantle in the generation of Late Cenozoic basic magmas in the Western Unite State[J]. J. Petrol., 1988, Special lithosphere issue: 331-349.
|
[38] | Temel A, Gondogdu M N. Petrological and geochemical characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 1998, 85: 327-354. doi: 10.1016/S0377-0273(98)00062-6 |
[39] | Rittmann A. Stable mineral assemllaqes of iqueous rocks[M]. New York, 1973. |
[40] | Pearce T H, Gorman B E, Birkett T C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Earth Planet. Sci. Lett., 1977, 36: 121-132. doi: 10.1016/0012-821X(77)90193-5 |
[41] | 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 2007, 1: 92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011 |
[42] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J. Petrol., 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956 |
[43] | 孙书勤, 汪云亮, 张成江.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质论评, 2003, 49(1): 40-47. |
[44] | Defant M J, Drummond M S. Derivation of some modern are magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0 |
[45] | Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219(1/3): 177-189. |
[46] | Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the An dean Austral Volcanic Zone[J]. Contrib. Mineral. Petrol., 1996, 123: 263-281. doi: 10.1007/s004100050155 |
[47] | Conticelli S, Pecerillo A. Petrology and geochemistry of potassic and ultrapo tassic volcanism in Central Italy petrogenesis and inference on the evolution of the mantle source[J]. Lithos, 1992, 28(3): 221-240. |
[48] | Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416): 144-146. doi: 10.1038/362144a0 |
[49] | Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zenland: Granitoid magmas fored by melting of matic lithosphere[J]. J. Geol. Soc., 1995, 152(4): 689-701. doi: 10.1144/gsjgs.152.4.0689 |
[50] | 张雪梅, 孙若昧, 滕吉文.青藏高原及其邻区地壳、岩石圈和软流层厚度研究[J].科学通报, 2007, 3: 332-338. doi: 10.3321/j.issn:0023-074X.2007.03.014 |
[51] | French W J, Cameron E P. Calculation of the tempera-ture of crystallization of silicates from basaltic melts[J]. Mineral, 1981, 44: 19-26. |
[52] | Yorder H S, Tilley C E. Origin of basalt magmas: an experiment study of natural and synthetic rock systems[J]. J. Petrol., 1962, 3: 342-532. doi: 10.1093/petrology/3.3.342 |
[53] | Ninkovich D P, Hays J D. Mediterranean island arcs and origin of high potash volcanoes[J]. Earth and Planetary Science Letters, 1972, 16: 331-345. doi: 10.1016/0012-821X(72)90151-3 |
[54] | Chung S L, Chu M F, Ji J Q, et al. The nature and timing of crustal thickening in Sourthern Tibet:Geochemical and zircon Hf isotopic constraints from post-collisional adakites[J]. Tectonophysics, 2009, 477(1/2): 36-48. |
[55] | 吴福元, 黄宝春, 叶凯, 等.青藏高原造山带的垮塌与高原隆升[J].岩石学报, 2008, 1: 1-30. |
[56] | Mo X X, Zhao Z D, Zhou S. Evidence for timing of the intiation of India-Asia collision from igneous rocks in Tibet[J]. Eos Transactions.American Geophysical Union, 2002, 83(47): F1003. |
[57] | 陈正乐, 万景林, 王小凤, 等.阿尔金断裂带8Ma左右的快速走滑及其地质意义[J].地球学报, 2002, 8: 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002 |
[58] | Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Provinee, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Seience Letters, 2007, 258: 293-306. doi: 10.1016/j.epsl.2007.03.042 |
[59] | 李海兵, 许志琴, 杨经绥, 等.阿尔金断裂带最大累积走滑位移量——900km?[J].地质通报, 2007, 26(10): 1288-1298. doi: 10.3969/j.issn.1671-2552.2007.10.007 |
[60] | 肖爱芳, 黎敦朋.新藏公路奇台达坂晚中新世火山岩的发现及40Ar-39Ar定年[J].地质通报, 2010, 21: 237-242. doi: 10.3969/j.issn.1671-2552.2010.02.007 |
[61] | Zheng H, Powell C, An Z, et al. Pliocene uPlift of the northern Tibetan Plateau[J]. Geology, 2007, 28(8): 715-718. |
[62] | 黎敦朋, 赵越, 胡健民, 等.青藏高原西北缘高原面与陡坡地貌形成过程的裂变径迹热年代学约束[J].岩石学报, 2007, 23(5): 900-910. |
[63] | Sun J M, Liu T S. The Age of the Taklimakan Desert[J]. Science, 2006, 312: 1621. doi: 10.1126/science.1124616 |
[64] | 万渝生, 罗照华, 李莉. 3.8Ma:青藏高原年轻碱性玄武岩错石离子探针U-Pb年龄测定[J].地球化学, 2004, 33(5): 442-446. |
[65] | 王权, 杨五宝, 张振福, 等.藏西北黑石北湖一带新近纪火山岩的特征及构造意义[J].地质通报, 2005, 1: 80-86. doi: 10.3969/j.issn.1671-2552.2005.01.012 |
[66] | 李金冬, 柏道远, 王先辉.藏北蚕眉山地区火山岩和夷平面的时代[J].地质通报, 2004, 7: 670-675. doi: 10.3969/j.issn.1671-2552.2004.07.006 |
① | 陕西省地质调查院. 新疆1: 25万阿克萨依湖幅I44C001002区域地质调查项目报告. 2006. |
② | 陕西省地质调查院. 新疆1: 5万I44E002006等4幅区域地质调查报告. 2015. |
Tectonic framework sketch map (a) and geological sketch map of the study area and the profile position of the Quanshuigou Formation volcanic rocks (a)
The measured geological section of the Quanshuigou Formation volcanic rocks
CL images of zircons from the biotite latite (PM007-13) in Quanshuigou Formation, measuring point position and their 206Pb/238U ages
Zircon REE patterns of biotite latite(PM007-13)
Concordia diagram showing LA-ICP-MS zircon U-Pb dating results (a) and 206Pb/238U weighted mean age (b) of Quanshuigou Formation volcanic rocks(PM007-13)
TAS (a) and SiO2-K2O (b) diagrams for Quanshuigou Formation volcanic rocks
The Harker diagrams of major elements for Quanshuigou Formation volcanic rocks
REE distribuion pattrrns (a) and trace element diagrams (b) for Quanshuigou Formation volcanic rocks
Logσ-Logτ (a), TFeO-MgO-Al2O3 (b), Ta/Yb-Th/Yb (c) and Nb*100/ZrTh*100/Zr (d) diagrams for Quanshuigou Formation volcanic rocks
Yb-Ce (a), TiO2/Al2O3-Zr/Al2O3 (b), (Y+Nb)-Rb (c) and Nb/Zr-Th/Zr (d) diagrams for Quanshuigou Formation volcanic rocks
Y-Sr/Y diagram of the Quanshuigou formation volcanic rocks
Al2O3-MgO (a), Ne'-Ol'-Q' (b), Sr-Rb (c) and SiO2-K2O (d) diagrams for Quanshuigou Formation volcanic rocks
La-La/Sm (a) and La-La/Yb (b) diagrams for Quanshuigou Formation volcanic rocks
SiO2-Mg# (a), Nb/Y-Rb/Y (b) and La/Yb-Yb (c) diagrams for Quanshuigou Formation volcanic rocks