2017 Vol. 36, No. 7
Article Contents

XU Xiaoyin, CAI Zhihui, CHEN Xijie, LI Huaqi, CAO Hui, HUANG Xuemeng, DUAN Xiangdong. Characteristics of the Paleozoic metabasite in Baoshan Terrane:Implications for the tectonic evolution[J]. Geological Bulletin of China, 2017, 36(7): 1104-1117.
Citation: XU Xiaoyin, CAI Zhihui, CHEN Xijie, LI Huaqi, CAO Hui, HUANG Xuemeng, DUAN Xiangdong. Characteristics of the Paleozoic metabasite in Baoshan Terrane:Implications for the tectonic evolution[J]. Geological Bulletin of China, 2017, 36(7): 1104-1117.

Characteristics of the Paleozoic metabasite in Baoshan Terrane:Implications for the tectonic evolution

More Information
  • The Baoshan Terrane is located on the southeastern margin of the Tibetan Plateau. Previous studies of the magmatism of the Baoshan Terrane were mainly focused on the Mesozoic and Cenozoic periods, whereas the study of the Paleozoic magmatism was relatively insufficient. In this paper, zircon U-Pb geochronology, geochemistry and Sm-Nd isotopes are presented for metabasite of Pumanshao Group in Bangmai area, Baoshan, Yunnan Province. The metabasites can be divided into two groups:amphibolite and biotite-plagioclase amphibolite. Zircon U-Pb geochronologic study shows that the two groups were formed at 536.7Ma and 532.0Ma, respectively. Geochemical characteristics indicate that the protolith of amphibolite was basaltic andesites and that of biotite-plagioclase amphibolite was alkaline basalt. REE and trace element distribution and diagrams for discriminating the tectonic settings reveal that the two groups have geochemical features of E-MORB and OIB, respectively. Combined with the regional tectonic setting, the authors hold that metabasites are products of Proto-Tethyan ridge subduction. During Late Neoproterozoic-Early Paleozoic, like things in the Lasha and Himalaya terranes, the Baoshan Terrane was situated on the margin of Gondwana too and experienced accre-tionary orogeny.

  • 加载中
  • [1] Li C, Xie Y W, Sha S L, et al. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China[J]. Geological Bulletin of China, 2008, 4(1): 31-36.

    Google Scholar

    [2] Hoffman P F. Did the breakout of Laurentia turn Gondwanaland insideout?[J]. Science, 1991, 252: 1409-1412. doi: 10.1126/science.252.5011.1409

    CrossRef Google Scholar

    [3] Powell C M, Li Z X, Mcelhinny M W, et al. Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana[J]. Geology, 1993, 21(10):889-892. doi: 10.1130/0091-7613(1993)021<0889:PCOTOT>2.3.CO;2

    CrossRef Google Scholar

    [4] Grunow A. Were aspects of Pan-African deformation linked to Iapetus opening?[J]. Geology, 1996, 24(24): 228-233.

    Google Scholar

    [5] Rogers J J W. A History of Continents in the past Three Billion Years[J]. Journal of Geology, 1996, 104(1): 91-107. doi: 10.1086/629803

    CrossRef Google Scholar

    [6] Parrish R R, Hodges V. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya[J]. Geological Society of America Bulletin, 1996, 108(7): 904-911. doi: 10.1130/0016-7606(1996)108<0904:ICOTAA>2.3.CO;2

    CrossRef Google Scholar

    [7] Decelles P G, Gehrels G E, Quade J, et al. Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal[J]. Science, 2000, 288(5465): 497-499. doi: 10.1126/science.288.5465.497

    CrossRef Google Scholar

    [8] Miller C, Thöni M, Frank W, et al. The early Palaeozoic magmatic event in the Northwest, Himalaya, India: source, tectonic setting and age of, emplacement[J]. Geological Magazine, 2001, 138(3): 237-251.

    Google Scholar

    [9] Meert J G. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 2003, 362(1/4): 1-40.

    Google Scholar

    [10] Cawood P A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic[J]. Earth-Science Reviews, 2005, 69 (3/4): 249-279.

    Google Scholar

    [11] Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1): 70-84.

    Google Scholar

    [12] Kumar R, Shah A N, Bingham D K. Positive evidence of a Precambrian tectonic phase in central Nepal, Himalaya[J]. Journal of the Geological Society of India, 1978, 19: 519-522.

    Google Scholar

    [13] Garzanti E, Casnedi R, Jadoul F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986, 48(3/4): 237-265.

    Google Scholar

    [14] Hodges K V, Parrish R R, Searle M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas[J]. Tectonics, 1996, 15(6): 1264-1291. doi: 10.1029/96TC01791

    CrossRef Google Scholar

    [15] Jeffrey L, Hacker B R, Dinklage W S, et al. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints[J]. Tectonics, 2000, 19(5): 872-895. doi: 10.1029/1999TC001147

    CrossRef Google Scholar

    [16] Marquer D, Chawla H S, Challandes N. Pre-Alpine High grade metamorphism in High Himalaya Crystalline Sequences: Evidences from Lower Palaeozoic Kinnar Kailas granite and surrounding rocks in the Sutlej Valley (Himachal pradesch, India)[J]. Eclogae Geologicae Helvetiae, 2000, 93: 207-220.

    Google Scholar

    [17] 许志琴, 杨经绥, 梁凤华, 等.喜马拉雅地体的泛非—早古生代造山事件年龄记录[J].岩石学报, 2005, 21(1): 1-12.

    Google Scholar

    [18] 张泽明, 王金丽, 沈昆, 等.环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迎巴瓦岩群的岩石学和年代学证据[J].岩石学报, 2008, 24(7): 1627-1637.

    Google Scholar

    [19] Baig M S, Lawrence R D, Snee L W. Evidence for late Precambrian to early Cambrian orogeny in northwest Himalaya, Pakistan. Geological Magazine, 1988, 125: 83-86. doi: 10.1017/S0016756800009390

    CrossRef Google Scholar

    [20] Gaetani M, Garzanti E. Multicyclic History of the Northern India Continental Margin (Northwestern Himalaya) (1)[J]. AAPG Bulletin, 1991, 75(9): 1427-1446.

    Google Scholar

    [21] Meert J G, Voo R V D. The assembly of Gondwana 800-550Ma[J]. Journal of Geodynamics, 1997, 23(3): 223-235.

    Google Scholar

    [22] Zhu D C, Zhao Z D, Niu Y, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328(11): 290-308.

    Google Scholar

    [23] Wang X, Zhang J, Santosh M, et al. Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 2012, 154(4): 248-262.

    Google Scholar

    [24] 李才, 吴彦旺, 王明, 等.青藏高原泛非—早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非造山不整合的发现[J].地质通报, 2010, 29(12): 1733-1736. doi: 10.3969/j.issn.1671-2552.2010.12.001

    CrossRef Google Scholar

    [25] 计文化, 陈守建, 赵振明, 等.西藏冈底斯构造带申扎带寒武系火山岩的发现及其地质意义[J].地质通报, 2009, 28(9): 1350-1354.

    Google Scholar

    [26] 宋述光, 季建清, 魏春景, 等.滇西北怒江早古生代片麻状花岗岩的确定及其构造意义[J].科学通报, 2007, 52(8): 927-930.

    Google Scholar

    [27] 丛峰, 林仕良, 李再会, 等.滇西腾冲地块片麻状花岗岩的锆石U-Pb年龄[J].地质学报, 2009, 83(5): 651-658.

    Google Scholar

    [28] Chen F, Li X H, Wang X L, et al. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1179-1194. doi: 10.1007/s00531-006-0146-y

    CrossRef Google Scholar

    [29] Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and SrNd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2008, 36: 168-182.

    Google Scholar

    [30] 刘琦胜, 叶培盛, 吴中海.滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J].地质通报, 2012, 31(2/3): 250-257.

    Google Scholar

    [31] 董美玲, 董国臣, 莫宣学, 等.滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J].岩石学报, 2012, 28(5): 1453-1464.

    Google Scholar

    [32] 蔡志慧, 许志琴, 段向东, 等.青藏高原东南缘滇西早古生代早期造山事件[J].岩石学报, 2013, 29 (6): 2123-2140.

    Google Scholar

    [33] 莫宣学, 路凤香, 沈上越, 等.三江特提斯火山作用与成矿[M].北京:地质出版社, 1993: 178-235.

    Google Scholar

    [34] Wu H, Boulter C A, Ke B, et al. The Changning-Menglian suture zone; a segment of the major Cathaysian-Gondwana divide in Southeast Asia[J]. Tectonophysics, 1995, 242(3/4): 267-280.

    Google Scholar

    [35] 钟大赉.滇川西部古特提斯造山带[M].北京:科学出版社, 1998: 231.

    Google Scholar

    [36] Sone M, Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geosciences, 2008, 340 (2/3): 166-179.

    Google Scholar

    [37] Metcalfe I. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19(1): 3-21. doi: 10.1016/j.gr.2010.02.016

    CrossRef Google Scholar

    [38] Morley C K. Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia[J]. Journal of the Geological Society, 2004, 161(5): 799-812. doi: 10.1144/0016-764903-124

    CrossRef Google Scholar

    [39] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [40] Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth & Planetary Science Letters, 2001, 188(1/2): 123-133.

    Google Scholar

    [41] Metcalfe I. Paleozoic and Mesozoic geological evolution of the SE Asian region: multidisciplinary constraints and implications for biogeography[C]//Hall R, Halloway J D. Biogeography and geological evolution of SE Asian, 1998: 25-41.https://www.researchgate.net/publication/267796868_Palaeozoic_and_Mesozoic_geological_evolution_of_the_SE_Asian_region_multidisciplinary_constraints_and_implications_for_biogeography

    Google Scholar

    [42] Ueno K. The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks: their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2003, 193(1): 1-24. doi: 10.1016/S0031-0182(02)00708-3

    CrossRef Google Scholar

    [43] 陈福坤, 李秋立, 王秀丽, 等.滇西地区腾冲地块东侧混合岩锆石年龄和Sr-Nd-Hf同位素组成[J].岩石学报, 2006, 22(2): 439-448.

    Google Scholar

    [44] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4): 481-492.

    Google Scholar

    [45] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [46] 濮巍, 高剑峰, 赵葵东, 等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J].地球学报, 2005, 41(s1): 54-54.

    Google Scholar

    [47] Schilling J G, Thompson G, Kingsley R, et al. Hotspot-migrating ridge interaction in the South Atlantic[J]. Nature, 1985, 313(313): 187-191.

    Google Scholar

    [48] Condie K C. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1/2): 1-18.

    Google Scholar

    [49] Melson W G, Vallier T L, Wright T L, et al. Chemical Diversity of Abyssal Volcanic Glass Erupted Along Pacific, Atlandtic, and Indian Ocean Sea-Floor Spreading Centers. Chapter 30 in Geophysics of the Pacific Ocean Basin and Its Margin[J]. Geophysical Monograph, 1976, (19): 351-368.

    Google Scholar

    [50] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [51] Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53(85): 303-323.

    Google Scholar

    [52] Pearce J A, Cann J R. Tectonic Setting of Basic Volcanic Rocks determined using Trace Element Analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300. doi: 10.1016/0012-821X(73)90129-5

    CrossRef Google Scholar

    [53] Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7

    CrossRef Google Scholar

    [54] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56(3): 207-218.

    Google Scholar

    [55] Wood D A. The application of a Th, Hf, Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth & Planetary Science Letters, 1980, 50(1): 11-30.

    Google Scholar

    [56] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites. Wiley, New York, 1982: 528-548.http://ci.nii.ac.jp/naid/10003358278

    Google Scholar

    [57] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[J]. Journal of the Electrochemical Society, 1983, 147(6): 2162-2173.

    Google Scholar

    [58] Agrawal S, Guevara M, Verma S P. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements[J]. International Geology Review, 2008, 50(12): 1057-1079. doi: 10.2747/0020-6814.50.12.1057

    CrossRef Google Scholar

    [59] Sisson V B, Poole A R, Harris N R, et al. Geochemical and geochronologic constraints for genesis of a tonalite-trondhjemite suite and associated mafic intrusive rocks in the eastern Chugach Mountains, Alaska: A record of ridge-transform subduction[J]. Geological Society of America, 2003, 10(11): 861-72.

    Google Scholar

    [60] Cole R B, Nelson S W, Layer P W, et al. Eocene volcanism above a depleted mantle slab window in southern Alaska[J]. Geological Society of America Bulletin, 2006, 118(1): 140-158.

    Google Scholar

    [61] Zindler A, Hart S. Chemical Geodynamics[J]. Annual Review of Earth & Planetary Sciences, 2003, 14(1): 493-571.

    Google Scholar

    [62] Niu Y, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 471-483.

    Google Scholar

    [63] Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 347-366.

    Google Scholar

    [64] Hawkins J W. Geology of supra-subduction zones-Implications for the origin of ophiolites[J]. Special Paper of the Geological Society of America, 2003, 373: 227-268.

    Google Scholar

    [65] 杨学俊, 贾小川, 熊昌利, 等.滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2012, 31(2/3): 264-276.

    Google Scholar

    [66] 毛晓长, 尹福光, 唐渊, 等.保山地块西缘早古生代增生造山作用[J].地球科学-中国地质大学学报, 2014, 39 (8): 1129-1139.

    Google Scholar

    [67] Frey F A, Green D H, Roy S D. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data[J]. Journal of Petrology, 1978, 19(3): 463-513. doi: 10.1093/petrology/19.3.463

    CrossRef Google Scholar

    [68] Takazawa E, Frey F A, Shimizu N, et al. Geochemical evidence for melt migration and reaction in the upper mantle[J]. Nature, 1992, 359(6390): 55-58. doi: 10.1038/359055a0

    CrossRef Google Scholar

    [69] Maury R C, Fourcade S, Coulon C, et al. Post-collisional Neogene magmatism of the Mediterranean Maghreb margin: a consequence ofslab breakoff[J]. Comptes Rendus de l'Academie des Sciences Series IIA Earth and Planetary Science, 2000, 331(3): 159-173.

    Google Scholar

    [70] Ayuso R A, Haeussler P J, Bradley D C, et al. The role of ridge subduction in determining the geochemistry and Nd-Sr-Pb isotopic evolution of the Kodiak batholith in southern Alaska[J]. Tectonophysics, 2009, 464(1/4): 137-163.

    Google Scholar

    [71] Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California[J]. Tectonics, 2009, 464 (1/4): 118-136.

    Google Scholar

    [72] 黄勇, 郝家栩, 白龙, 等.滇西施甸地区晚泛非运动的地层学和岩石学响应[J].地质通报, 2012, 26 (1): 1-6.

    Google Scholar

    [73] Decelles P G, Gehrels G E, Quade J, et al. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal[J]. Geological Society of America Bulletin, 1998, 110(1): 2-21. doi: 10.1130/0016-7606(1998)110<0002:NFBDEU>2.3.CO;2

    CrossRef Google Scholar

    [74] Laurent G, Parrish R R, Brown R L, et al. Crustal thickening leading to exhumation of the Himalayan Metamorphic core of central Nepal: Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology[J]. Tectonics, 2001, 20(5): 729-747. doi: 10.1029/2000TC001204

    CrossRef Google Scholar

    [75] 刘文灿, 梁定益, 王克友, 等.藏南康马地区奥陶系的发现及其地质意义[J].地学前缘, 2002, 31(2/3): 306-313.

    Google Scholar

    [76] Gehrels G E, Decelles P G, Ojha T P, et al. Geologic and U-ThPb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya[J]. Geological Society of America Bulletin, 2006, 118(1/2): 185-198.

    Google Scholar

    [77] Gehrels G, Kapp P, Decelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30: 1-27.

    Google Scholar

    [78] 李才, 董永胜, 翟庆国, 等.青藏高原羌塘早古生代蛇绿岩-堆晶辉长岩的锆石SHRIMP定年及其意义[J].岩石学报, 2008, 4(1): 31-36.

    Google Scholar

    [79] 戚学祥, 李化启, 李天福, 等.东喜马拉雅构造结南迦巴瓦群高压麻粒岩中含石榴石花岗岩脉锆石SHRIMP U-Pb定年及其与折返作用[J].岩石学报, 2010, 26(3):975-984.

    Google Scholar

    [80] 胡培远, 李才, 苏犁, 等.青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J].中国地质, 2010, 37(4): 1050-1061.

    Google Scholar

    [81] Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600.

    Google Scholar

    [82] Guynn J, Kapp P, Gehrels G E, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 2012, 43(1): 23-50. doi: 10.1016/j.jseaes.2011.09.003

    CrossRef Google Scholar

    [83] Gehrels G E, Decelles P G, Martin A, et al. Initiation of the Himalayan Orogen as an Early Paleozoic Thin-skinned Thrust Belt[J]. GSA Today, 2003, 13(9): 75-85.

    Google Scholar

    [84] Boger S D, Wilson C J L, Fanning C M. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana?[J]. Geology, 2001, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2

    CrossRef Google Scholar

    云南地质调查局. 1: 25万潞西市幅区域地质报告. 2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(1177) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint