2019 Vol. 38, No. 12
Article Contents

PENG Weihang, BAI Lin, SHANG Shiwei, TANG Xiaojie, ZHANG Zheyuan. Common mineral intelligent recognition based on improved InceptionV3[J]. Geological Bulletin of China, 2019, 38(12): 2059-2066.
Citation: PENG Weihang, BAI Lin, SHANG Shiwei, TANG Xiaojie, ZHANG Zheyuan. Common mineral intelligent recognition based on improved InceptionV3[J]. Geological Bulletin of China, 2019, 38(12): 2059-2066.

Common mineral intelligent recognition based on improved InceptionV3

More Information
  • To study 16 kinds of common minerals, the authors collected 1000 images for each type, and then divided them into training set, validation set and test set. Before putting the images into the model, the authors selected a random area of each image for data augmentation. After training the InceptionV3 model with 70000 steps, the authors obtained an 81% accuracy in the test set. Through improving the loss function and introducing the Center Loss, the authors raised the accuracy to 86% after training 400000 steps. The obfuscation matrix shows that, the recognition accuracies for the minerals with obvious appearance characteristics such as malachite are higher while those for other minerals like sphalerite are less due to the obfuscation with other minerals. The analysis of the feature map shows that the model extracts the radial feature of malachite perfectly, and the feature vector of mineral image aggregate is in a high degree, which also can prove the reliability of the model.

  • 加载中
  • [1] 方少木.矿物岩石肉眼鉴定[M].北京:煤炭工业出版社, 1980.

    Google Scholar

    [2] 赵鹏大.大数据时代数字找矿与定量评价[J].地质通报, 2015, 34(7):1255-1259. doi: 10.3969/j.issn.1671-2552.2015.07.001

    CrossRef Google Scholar

    [3] 严光生, 薛群威, 肖克炎, 等.地质调查大数据研究的主要问题分析[J].地质通报, 2015, 34(7):1273-1279. doi: 10.3969/j.issn.1671-2552.2015.07.004

    CrossRef Google Scholar

    [4] 姚震, 杜子图.关于新时代地质调查工作的战略思考[J].地质通报, 2018, 37(11):2120-2124.

    Google Scholar

    [5] 赵明等.矿物学导论[M].北京:地质出版社, 2017.

    Google Scholar

    [6] Mengko T R. Digital Image Processing Technique in Rock Forming Minerals Idenificaiton[C]//IEEE Asia-Pacific Conference on Circuits and Systems, 2000: 4.

    Google Scholar

    [7] Thompson S, Fueten F, Bockus D. Mineral identification using artificial neural networks and the rotating polarizer stage[J]. Computers & Geosciences, 2001, (27):1081-1089.

    Google Scholar

    [8] Baykana N A, Yılmaz N. Mineral identification using color spaces and artificial neural networks[J]. Computers & Geosciences, 2010, (36):91-97.

    Google Scholar

    [9] 叶润青, 牛瑞卿, 张良培, 等.基于图像分类的矿物含量测定及精度评价[J].中国矿业大学学报, 2011, 40(5):810-815+822.

    Google Scholar

    [10] Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, et al. Semi-automated porosity identi fi cation from thin section images using image analysis and intelligent discriminant classifiers[J]. Computers & Geosciences, 2012, (45):36-45.

    Google Scholar

    [11] Aprile A, Castellano G, Eramo G. Combining image analysis and modular neural networks for classification of mineral inclusions and pores in archaeological potsherds[J]. Journal of Archaeological Science, 2014, (50):262-272.

    Google Scholar

    [12] Aligholi S, Khajav R, Razmara G. Automated mineral identification algorithm using optical properties of crystals[J]. Computers & Geosciences, 2015, (85):175-183.

    Google Scholar

    [13] Baklanova O E, Baklanov A, Shvets O Y. Methods and algorithms of computer vision for automated processing of mineral rocks images[C]//2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics. Timisoara, 2015: 449-454.

    Google Scholar

    [14] 白林, 姚钰, 李双涛, 等.基于深度学习特征提取的岩石图像矿物成分分析[J].中国矿业, 2018, 27(7):178-182.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(960) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint