2019 Vol. 38, No. 12
Article Contents

BAI Lin, WEI Xin, LIU Yu, WU Chongyang, CHEN Lihui. Rock thin section image recognition and classification based on VGG model[J]. Geological Bulletin of China, 2019, 38(12): 2053-2058.
Citation: BAI Lin, WEI Xin, LIU Yu, WU Chongyang, CHEN Lihui. Rock thin section image recognition and classification based on VGG model[J]. Geological Bulletin of China, 2019, 38(12): 2053-2058.

Rock thin section image recognition and classification based on VGG model

  • The complexity and multiple solutions of rock thin section images lead to the difficulty in classification of rock thin sections. This paper attempts to apply the deep learning method to the classification of rock thin images. Thin section images of 6 common rock types, such as andesite, dolomite and granite, were selected in the experiment, and 1000 images of each type were used as experimental data. The VGG model was established, and the identification accuracy of the verification set reached 82% after 90, 000 iterations. Based on the analysis of the experimental data, the authors found that the rock images with similar compositions are easy to be confused; for example, dolomite and oolitic limestone are both carbonate rocks and it is easy to misjudge each other. Plagioclase porphyry, microcrystalline and cryptocrystalline or vitreous matrix were extracted from the andesite characteristic diagram, and oolitic and interstitial materials were extracted from the oolitic limestone characteristic diagram. The result obtained by the authors proves that the VGG model is effective in the classification of rock thin section.

  • 加载中
  • [1] 赵鹏大.大数据时代数字找矿与定量评价[J].地质通报, 2015, 34(7):1255-1259. doi: 10.3969/j.issn.1671-2552.2015.07.001

    CrossRef Google Scholar

    [2] 严光生, 薛群威, 肖克炎, 等.地质调查大数据研究的主要问题分析[J].地质通报, 2015, 34(7):1273-1279. doi: 10.3969/j.issn.1671-2552.2015.07.004

    CrossRef Google Scholar

    [3] 陈建平, 李婧, 崔宁, 等.大数据背景下地质云的构建与应用[J].地质通报, 2015, 34(7):1260-1265. doi: 10.3969/j.issn.1671-2552.2015.07.002

    CrossRef Google Scholar

    [4] 肖克炎, 孙莉, 李楠, 等.大数据思维下的矿产资源评价[J].地质通报, 2015, 34(7):1266-1272. doi: 10.3969/j.issn.1671-2552.2015.07.003

    CrossRef Google Scholar

    [5] 刘延保, 曹树刚, 刘玉成.基于LS-SVM的岩石细观图像分析方法探讨[J].岩石力学与工程学报, 2008, 27(5):1059-1059. doi: 10.3321/j.issn:1000-6915.2008.05.023

    CrossRef Google Scholar

    [6] Singh N, Singh T, Tiwary A, et al. Textural identification of basaltic rock mass using image processing and neural network[J]. Computers & Geosciences, 2010, 14(2):301-310.

    Google Scholar

    [7] Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, et al. Semiautomated porosity identification from thin section images using image analysis and intelligent discriminant classifiers[J]. Computers & Geosciences, 2012, 45:36-45.

    Google Scholar

    [8] Mlynarczuk M, Górszczyk A, 's ipek B. The application of pattern recognition in the automatic classification of microscopicrock images[J]. Computers & Geosciences, 2013, 60(10):126-133.

    Google Scholar

    [9] 程国建, 杨静, 黄全舟, 等.基于概率神经网络的岩石薄片图像分类识别研究[J].科学技术与工程, 2013, 13(31):9231-9235. doi: 10.3969/j.issn.1671-1815.2013.31.014

    CrossRef Google Scholar

    [10] Marmo R, Amodio S, Tagllaferri R, et al. Textural identification of carbonate rocks by image processing and neural network:Methodology proposal and examples[J]. Computers & Geosciences, 2014, 31(5):649-659.

    Google Scholar

    [11] 郭超, 刘烨.多色彩空间下的岩石图像识别研究[J].科学技术与工程, 2014, 14(18):247-251. doi: 10.3969/j.issn.1671-1815.2014.18.048

    CrossRef Google Scholar

    [12] 刘烨, 程国建, 马微, 等.基于铸体薄片图像颜色空间与形态学梯度的岩石分类[J].中南大学学报(自然科学版), 2016, 47(7):2375-2382.

    Google Scholar

    [13] Li N, Hao H, Gu Q, et al. A transfer learning method for automatic identification of sandstone microscopic images[J]. Computers & Geosciences, 2017, 103:111-121.

    Google Scholar

    [14] 白林, 姚钰, 李双涛, 等.基于深度学习特征提取的岩石图像矿物成分分析[J].中国矿业, 2018, 27(7):178-182.

    Google Scholar

    [15] Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7):1527-1554. doi: 10.1162/neco.2006.18.7.1527

    CrossRef Google Scholar

    [16] Krizhevsky A, Sutskever I, Hinton G. ImageNet Classification with Deep Convolutional Neural Networks[C]//NIPS. Curran Associates Inc., 2012.

    Google Scholar

    [17] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791

    CrossRef Google Scholar

    [18] Zhu Y, Bai L, Peng W, et al. Depthwise Separable Convolution Feature Learning for Ihomogeneous Rock Image Classification[C]//ICCSIP, 2018, 1005: 165-176.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(1300) PDF downloads(13) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint