2019 Vol. 38, No. 12
Article Contents

LI Zhenhuan, LIU Xuelong, ZHU Yueqin, ZHANG Qi, LUO Ying, ZHANG Changzhen, CHEN Jianhang, WANG Shuaishuai, YANG Fucheng. Difference between komatiites and picrites and a discussion on some Late Paleozoic 'komatiites'[J]. Geological Bulletin of China, 2019, 38(12): 1971-1980.
Citation: LI Zhenhuan, LIU Xuelong, ZHU Yueqin, ZHANG Qi, LUO Ying, ZHANG Changzhen, CHEN Jianhang, WANG Shuaishuai, YANG Fucheng. Difference between komatiites and picrites and a discussion on some Late Paleozoic "komatiites"[J]. Geological Bulletin of China, 2019, 38(12): 1971-1980.

Difference between komatiites and picrites and a discussion on some Late Paleozoic "komatiites"

More Information
  • In the past, academia paid much attention to the similarity between komatiites and picrites, but ignored their differences. In this paper, the global data of Archaean komatiites and Post-Archaean low/high titanium picrites in the database were collected by full data model. Based on comparing the differences between them, the authors found that komatiites are richer in MgO, Cr, Ni, Cs, Pb, Co and Zn, followed by low-titanium picrites (except for Co and Zn). As for the other main and trace elements, high-titanium picrites has the highest content, followed by low-titanium picrites and then by komatiites. Based on the differences between elements such as Cr/Ga, MgO/Ga, MnO/Zr and Cr/Zr, the authors used density distribution to draw an isodensity discriminant map which can effectively distinguish the three types of rocks, and redefined the lithology of some Late Paleozoic "komatiites" with this diagram. The results of lithofacies and geochemical characteristics show that, in the Late Paleozoic "komatiites", the rocks in the eastern part of India are high-titanium picrites, those in Vietnam are low-titanium picrites with similar chemical composition to komatiites, and those in Ladak area of India are low-titanium picrites.

  • 加载中
  • [1] Herzberg C, O' Hara M J. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites[J]. Earth-Science Reviews, 1998, 44(1):39-79.

    Google Scholar

    [2] Depaolo D J. Crustal growth and mantle evolution-inferences from models of element transport and Nd and Sr isotopes[J]. Geochimica et Cosmochimica Acta, 1980, 44(8):1185-1196. doi: 10.1016/0016-7037(80)90072-1

    CrossRef Google Scholar

    [3] Campbell I H, Griffiths R W, Hill R E T. Melting in an Archean mantle plume:Heads its basalts, tails its komatiites[J]. Nature, 1989, 339(6227):697-699. doi: 10.1038/339697a0

    CrossRef Google Scholar

    [4] Nisbet E G, Cheadle N T, Arndt M J, et al. Constraining the potential temperature of the Archaean mantle:A review of the evidence from komatiites[J]. Lithos, 1993, 30(3/4):291-307.

    Google Scholar

    [5] Bennett V C, Nutman A P, Esat T M. Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultrama ficrocks from southern west Greenland (3.8 Ga) and western Australia (3.46Ga)[J]. Geochimica et Cosmochimica Acta, 2002, 66(14):2615-2630. doi: 10.1016/S0016-7037(02)00862-1

    CrossRef Google Scholar

    [6] Hanski E, Kamentsky V S. Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland:Evidence for coexistence and mixing of komatiitic and picritic magmas[J]. Chemical Geology, 2013, 343(3):25-37.

    Google Scholar

    [7] Kerr A C. La isla de Gorgona, Colombia:A petrological enigma?[J]. Lithos, 2005, 84(12):77-101.

    Google Scholar

    [8] Kusky T M, Polat A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305(13):43-73.

    Google Scholar

    [9] Atherton M, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [10] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(12):1-24.

    Google Scholar

    [11] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. doi: 10.1016/0012-821X(73)90129-5

    CrossRef Google Scholar

    [12] Moyen J F, Laurent O. Archaean tectonic systems:A view from igneous rocks[J]. Lithos, 2018, 302/303:99-125. doi: 10.1016/j.lithos.2017.11.038

    CrossRef Google Scholar

    [13] 关志红, 项红莉, 朱意萍, 等.澳大利亚伊尔岗克拉通科马提岩型镍矿成矿作用及找矿方法[J].地质通报, 2014, 33(2/3):238-246.

    Google Scholar

    [14] Anderson D L. A statistical test of the two-reservoir model for helium isotopes[J]. Earth and Planetary Science Letters, 2001, 193(12):77-82.

    Google Scholar

    [15] 张招崇, 郝艳丽, 王福生.大火成岩省中苦橄岩的研究意义[J].地学前缘(中国地质大学, 北京), 2003, 10(3):105-114.

    Google Scholar

    [16] 姜常义, 钱壮志, 姜寒冰, 等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报, 2007, 23(4):777-792.

    Google Scholar

    [17] 罗应, 袁方林, 金维浚, 等.全球苦橄岩与太古宙科马提岩对比:全数据模式的启示[J].地质科学, 2018, 53(4):1267-1284.

    Google Scholar

    [18] Hanski E, Walker R J, Huhma H, et al. Origin of the PermianTriassic komatiites, northwestern Vietnam[J]. Contrib Mineral Petrol., 2004, 147:453-469. doi: 10.1007/s00410-004-0567-1

    CrossRef Google Scholar

    [19] Basilios T, Georgia P P I, David J W P, et al. Triassic rift-related komatiite, picrate and basalt, Pelagonian continental margin, Greece[J]. Lithos, 2008, 104:199-215. doi: 10.1016/j.lithos.2007.12.007

    CrossRef Google Scholar

    [20] Rao R, Rai H. Permian komatiites and associated basalts from the marine sediments of Chhongtash Formation, southeast Karakoram, Ladakh, India[J]. Mineralogy and Petrology, 2007, 91:171-189. doi: 10.1007/s00710-007-0206-4

    CrossRef Google Scholar

    [21] Prasad J, Bhattacharya D K. Geochemical Constraints on Cumulate Textured Ti-rich Al-depleted Komatiites from Chotanagpur Gneissic Complex, Eastern India[J]. Journal Geological Society of India, 2016, (87):429-438.

    Google Scholar

    [22] Parman S W, Grove T L, Dann J C. The production of Barberton komatiites in an Archean subduction zone[J]. Geophys. Res. Lett., 2001, 28:2513-2516.

    Google Scholar

    [23] Richards M A, Duncan R A, Courtillot V E. Flood-basalts and hot spot tracks:Plume heads and tai ls[J]. Science, 1989, 246:103-107. doi: 10.1126/science.246.4926.103

    CrossRef Google Scholar

    [24] Burke K. The geology of continental margins[J]. The Journal of Geology, 1976, 84(4):499-500.

    Google Scholar

    [25] 赵海玲, 狄永军, 刘振文, 等.东南沿海地区新生代火山作用和地幔柱[J].地质学报, 2004, 78(6):781-788. doi: 10.3321/j.issn:0001-5717.2004.06.008

    CrossRef Google Scholar

    [26] 张招崇, 闫升好, 陈柏林, 等.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义[J].地球科学(中国地质大学学报), 2005, 30(3):289-297.

    Google Scholar

    [27] 桑隆康, 马昌前.岩石学[M].北京:地质出版社, 2009:141-142.

    Google Scholar

    [28] Anderson D L. Komatiites and picrites:Evidence that the 'plume' source is depleted[J]. Earth and Planetary Science Letters, 1994, 128(34):303-311.

    Google Scholar

    [29] Gibson S A. Major element heterogeneity in Archean to recent mantle plume starting-heads[J]. Earth and Planetary Science Letters, 2002, 195(1):59-74.

    Google Scholar

    [30] Polat A. The geochemistry of Neoarchen (ca.2700 Ma) tholeiitic basalts, transitional to alkaline basalts, and gabbros, Wawa Subprovinc, Canada; Implication for petrogentic and geodynamic processes[J]. Precambrian Research, 2009, 168(12):83-105.

    Google Scholar

    [31] Arndt N T, Lesher C M, Barnes S J. Komatiite[M]. Cambridge University Press, Cambridge, UK, 2008: 1-467.

    Google Scholar

    [32] Campbell I H, Griffiths R W. The changing nature of mantle hotspots through time; implications for the chemical evolution of the mantle[J]. Geology, 1992, 100:497-523. doi: 10.1086/629605

    CrossRef Google Scholar

    [33] Mishkin M A, Vovna G M, Lennikov A M, et al. The lower crustal early Proterozoic metabasite-enderbite association of the Dzhugdzhur block (Aldan Shield):Its nature and origin of protoliths[J]. Doklady Earth Sciences, 2007, 412(1):43-48. doi: 10.1134/S1028334X07010102

    CrossRef Google Scholar

    [34] Chung S L, Lee T Y, Lo C H, et al. Intraplate extention prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 1997, 25:311-314. doi: 10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2

    CrossRef Google Scholar

    [35] Chung S L, Jahn B M, Genyao W, et al. The Emeishan Flood Basalt in SW China: A mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian-Triassic boundary[C]//Flower M F J, Chung S L, Lo C H, et al. Mantledynamics and plate tectonics in East Asia. AGU Geodynamics Series, 1998, 27: 47-58.

    Google Scholar

    [36] 张招崇, Mahoney J, 王福生, 等.峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据[J].岩石学报, 2006, 22(6):1538-1552.

    Google Scholar

    [37] Kulikov V S, Kulikova V V."A new approach to the classification of high-magnesian rocks"[C]//Proceedings of the 2nd All-Russia Petrographic conference, Syktyvkar, 2000, 1: 111-112.

    Google Scholar

    [38] Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23:889-892 doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(647) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint