2019 Vol. 38, No. 12
Article Contents

LIU Xinyu, ZHANG Qi, ZHANG Chengli. The establishment of oceanic andesites tectonic environment discrimination diagrams with big data method.[J]. Geological Bulletin of China, 2019, 38(12): 1963-1970.
Citation: LIU Xinyu, ZHANG Qi, ZHANG Chengli. The establishment of oceanic andesites tectonic environment discrimination diagrams with big data method.[J]. Geological Bulletin of China, 2019, 38(12): 1963-1970.

The establishment of oceanic andesites tectonic environment discrimination diagrams with big data method.

More Information
  • Geochemical elements of magmatic rocks often indicate their tectonic environments. Previous geologists used tectonic environment discriminant diagrams to describe their correlation. However, it is too challenging to apply discriminant diagrams to identifying the tectonic environment of andesites because of their complexity of petrogenesis and the unicity of their tectonic environment. Based on the GEOROC and PetDB databases, the authors intergrated the global Cenozoic oceanic andesites with three categories:mid-oceanic ridge andesites (MORA), oceanic island andesites (OIA) and island arc andesites (IAA). With 924 element ratios consisting of any two of 43 elements, the authors built more than 420, 000 rectangular coordinate systems. 4 optimal discriminant diagrams were sifted by calculating overlap ratios among the three types of oceanic andesites:lg(Ba/Nb) versus lg(Ga/Cs), lg(Eu/Pb) versus lg(TFeO/Ga), lg(Ga/Cs) versus lg(K2O/Nb) and lg(Cs/Nb) versus lg(MnO/Pb). The elements and element ratios were analyzed by comparing the kernel densities of the three types of andesites, with some conclusions reached:(1) The ratio of LILE and HFSE can effectively differentiate MORA and IAA; (2) the ratio of LILE and other elements is useful to identifying OIA from the other two types; (3) in a certain degree, LILE is more appropriate for determining tectonic environments of oceanic andesites than HFSE. This study presents that andesite is likely to be a widely used indicator of tectonic environments, which might be more appropiate than basalt discriminant diagram. It further indicates that even the andesite genesis is much more complicated than basalt, big data method is an effective approach to extract the correlation with tectonic discriminant significant.

  • 加载中
  • [1] 赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 2007, 31(1):92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011

    CrossRef Google Scholar

    [2] Pearce J A, Cann J R. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y[J]. Earth & Planetary Science Letters, 1971, 12(3):339-349.

    Google Scholar

    [3] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth & Planetary Science Letters, 1973, 19(2):290-300.

    Google Scholar

    [4] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [5] 李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J].岩石学报, 1993, (2):146-157. doi: 10.3321/j.issn:1000-0569.1993.02.005

    CrossRef Google Scholar

    [6] Mullen E D. MnO/TiO2/P2O5:a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth & Planetary Science Letters, 1983, 62(1):53-62.

    Google Scholar

    [7] Byers C D, Muenow D W, Garcia M O. Volatiles in basalts and andesites from the Galapagos Spreading Center, 85° to 86° W[J]. Geochimica Et Cosmochimica Acta, 1983, 47(9):1551-1558. doi: 10.1016/0016-7037(83)90181-3

    CrossRef Google Scholar

    [8] Byerly G R, Melson W G, Vogt P R. Rhyodacites, andesites, ferrobasalts and ocean tholeiites from the galapagos spreading center[J]. Earth & Planetary Science Letters, 1976, 30(2):215-221.

    Google Scholar

    [9] Gill J B. Organic Andesites and Plate Tectonics[M]. Berlin Heidelberg:Springer-Verlag, 1981:1-314.

    Google Scholar

    [10] Bailey J C. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chemical Geology, 1981, 32:139-154. doi: 10.1016/0009-2541(81)90135-2

    CrossRef Google Scholar

    [11] Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary:Identification and significance[J]. Lithos, 1989, 23(1):1-18.

    Google Scholar

    [12] Condie K C. Geochemistry and Tectonic Setting of Early Proterozoic Supracrustal Rocks in the Southwestern United States[J]. The Journal of Geology, 1986, 94(6):845-864. doi: 10.1086/629091

    CrossRef Google Scholar

    [13] Verma S P, Verma S K. First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against post emplacement compositional changes and petrogenetic processes[J]. Turkish Journal of Earth Sciences, 2013, 22:931-995. doi: 10.3906/yer-1204-6

    CrossRef Google Scholar

    [14] Williamson B J, Hodgkinson M, Imai A, et al. Testing the Plagioclase Discriminator on the GEOROC Database to Identify Porphyry-Fertile Magmatic Systems in Japan[J]. Resource Geology, 2018, 126(2):1-6.

    Google Scholar

    [15] Nielsen S G, Marschall H R. Geochemical evidence for mélange melting in global arcs[J]. Science Advances, 2017, 3(e16024024):1-7.

    Google Scholar

    [16] Chapman J B, Ducea M N, Decelles P G, et al. Tracking changes in crustal thickness during orogenic evolution with Sr/Y:An example from the North American Cordillera[J]. Geology, 2015, 43(10):919-922. doi: 10.1130/G36996.1

    CrossRef Google Scholar

    [17] White W M. Oceanic Island Basalts and Mantle Plumes:The Geochemical Perspective[J]. Annual Review of Earth & Planetary Sciences, 2010, 38(38):133-160.

    Google Scholar

    [18] 杨婧, 王金荣, 张旗, 等.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J].地质通报, 2016, 35(12):1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001

    CrossRef Google Scholar

    [19] 王金荣, 陈万峰, 张旗, 等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J].岩石学报, 2017, (3):993-1005.

    Google Scholar

    [20] 张旗, 袁方林, 焦守涛, 等.雷达图在地球科学研究中的应用及其意义[J].科学通报, 2017, (1):79-89.

    Google Scholar

    [21] 刘欣雨, 张旗, 张成立, 等.中新世全球重要事件及其意义:数据挖掘的启示[J].科学通报, 2017, (15):1645-1654.

    Google Scholar

    [22] 王文松.测量列中离群值的判断[J].电测与仪表, 1992, (11):5-10.

    Google Scholar

    [23] Vermeesch P. Tectonic discrimination diagrams revisited[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6):1-55.

    Google Scholar

    [24] Pearce J A, Alabaster T, Shelton A W, et al. The Oman Ophiolite as a Cretaceous Arc-Basin Complex:Evidence and Implications[J]. Philosophical Transactions of the Royal Society. A:Mathematical, Physical and Engineering Sciences, 1981, (1454):299-317.

    Google Scholar

    [25] 李存华, 孙志挥, 陈耿, 等.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展, 2004, 41(10):1712-1719.

    Google Scholar

    [26] Condie K C. Incompatible element ratios in oceanic basalts and komatiites:Tracking deep mantle sources and continental growth rates with time[J]. Geochemistry Geophysics Geosystems, 2003, 4(1):1-28.

    Google Scholar

    [27] 朱弟成, 廖忠礼, 潘桂棠, 等.正确使用构造判别图解和地球化学数据的一些建议[J].地球与环境, 2001, 29(3):152-157.

    Google Scholar

    [28] Kelemen P B. Genesis of high Mg# andesites and the continental crust[J]. Contributions to Mineralogy & Petrology, 1995, 120(1):1-19.

    Google Scholar

    [29] 唐功建, 王强.高镁安山岩及其地球动力学意义[J].岩石学报, 2010, (8):2495-2512.

    Google Scholar

    [30] Straub S M, Gomez-Tuena A, Stuart F M, et al. Formation of hybrid arc andesites beneath thick continental crust[J]. Earth & Planetary Science Letters, 2011, 303(34):337-347.

    Google Scholar

    [31] Annen C, Sparks R S J. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust[J]. Earth & Planetary Science Letters, 2002, 203(3):937-955.

    Google Scholar

    [32] Zhu M S, Miao L C, Yang S H. Genesis and evolution of subduction-zone andesites:evidence from melt inclusions[J]. International Geology Review, 2013, 55(10):1179-1190. doi: 10.1080/00206814.2013.767527

    CrossRef Google Scholar

    [33] Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters, 1981, 53(2):189-202. doi: 10.1016/0012-821X(81)90153-9

    CrossRef Google Scholar

    [34] Beier C, Haase K M, Brandl P A, et al. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing[J]. Contributions to Mineralogy & Petrology, 2017, 172(5):33.

    Google Scholar

    [35] Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 2007, 35(1):351-354.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1788) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint