2019 Vol. 38, No. 12
Article Contents

SUN Jiankun, DU Xueliang, ZHANG Baoyue, WANG Long, JIN Weijun, ZHANG Qi, LUO Xiong, ZHU Yueqin. A comparison of tree-based ensemble algorithms on the main element content of monoclinal pyroxene in mafic-ultramafic rocks[J]. Geological Bulletin of China, 2019, 38(12): 1981-1991.
Citation: SUN Jiankun, DU Xueliang, ZHANG Baoyue, WANG Long, JIN Weijun, ZHANG Qi, LUO Xiong, ZHU Yueqin. A comparison of tree-based ensemble algorithms on the main element content of monoclinal pyroxene in mafic-ultramafic rocks[J]. Geological Bulletin of China, 2019, 38(12): 1981-1991.

A comparison of tree-based ensemble algorithms on the main element content of monoclinal pyroxene in mafic-ultramafic rocks

More Information
  • Relying on the geochemical composition of the magma tectonic environment to understand the formation process of magma is an important application in rock geochemistry. While the current works to make full use of rock geochemical components for the tectonic setting discrimination are not enough. In this study, the authors utilized four tree-based machine learning methods to make magma tectonic environment discriminations and feature sorting on the 13 main ingredients of monoclinal pyroxene in maficultramafic rocks from global Cenozoic ocean island (OIB), island arc (IAB), and mid-ocean ridge (MORB). Through the comparison of the four tree-based machine learning methods, the authors proved the validity of the tree-based methods for the identification of geochemical components and derived the advantages and disadvantages of the four methods in dealing with the identification of rock tectonic environments:decision trees gain better comprehensibility but have lower recognition accuracy, boosting algorithms AdaBoost and GBDT have the best recognition accuracy but lower comprehensibility, and random forest is a better choice during trading off and comprehensibility performance. Besides, Cr2O3, TFeO, TiO2, FeO and Al2O3 are figured out as the most important ingredients for magma tectonic environment discriminations on this dataset.

  • 加载中
  • [1] Leterrier J, Maury R C, Thonon P, et al. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series[J]. Earth and Planetary Science Letters, 1982, 59(1):139-154. doi: 10.1016/0012-821X(82)90122-4

    CrossRef Google Scholar

    [2] Asthana D. Relict clinopyroxenes from within-plate metadolerites of the Petroi Metabasalt, the New England Fold Belt, Australia[J]. Mineralogical Magazine, 1991, 55(381):549-561. doi: 10.1180/minmag.1991.055.381.08

    CrossRef Google Scholar

    [3] Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 1977, 63(2):149-160. doi: 10.1007/BF00398776

    CrossRef Google Scholar

    [4] Helmy H M, El Mahallawi M M. Gabbro akarem mafic-ultramafic complex, Eastern Desert, Egypt:A Late Precambrian analogue of Alaskan-type complexes[J]. Mineralogy and Petrology, 2003, 77(1):85-108.

    Google Scholar

    [5] Khedr M Z, Arai S. Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt:Evidence of fluids during chromitite genesis[J]. Lithos, 2016, 240:309-326.

    Google Scholar

    [6] Hanson R E, Roberts J M, Dickerson P W, et al. Cryogenian intraplate magmatism along the buried southern Laurentian margin:Evidence from volcanic clasts in Ordovician strata, Marathon uplift, west Texas[J]. Geology, 2016, 44(7):539-542. doi: 10.1130/G37889.1

    CrossRef Google Scholar

    [7] Menand T, Annen C, Blanquat M de S. Rates of magma transfer in the crust:Insights into magma reservoir recharge and pluton growth[J]. Geology, 2015, 43(3):199-202.

    Google Scholar

    [8] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. doi: 10.1016/0012-821X(73)90129-5

    CrossRef Google Scholar

    [9] Glassley W. Geochemistry and tectonics of the Crescent volcanic rocks, Olympic Peninsula, Washington[J]. GSA Bulletin, 1974, 85(5):785-794. doi: 10.1130/0016-7606(1974)85<785:GATOTC>2.0.CO;2

    CrossRef Google Scholar

    [10] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1):77-94. doi: 10.1144/GSL.SP.1984.016.01.06

    CrossRef Google Scholar

    [11] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[J]. Andesites, 1982, 8:528-548.

    Google Scholar

    [12] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    [13] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1):11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [14] Mullen E D. MnO/TiO2/P2O5:a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62(1):53-62. doi: 10.1016/0012-821X(83)90070-5

    CrossRef Google Scholar

    [15] Zhang Q, Sun W, Zhao Y, et al. New discrimination diagrams for basalts based on big data research[J]. Big Earth Data, 2019, 3(1):45-55. doi: 10.1080/20964471.2019.1576262

    CrossRef Google Scholar

    [16] 王金荣, 陈万峰, 张旗, 等. N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论[J].岩石学报, 2017, 33(3):993-1005.

    Google Scholar

    [17] 王金荣, 潘振杰, 张旗, 等.大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现[J].岩石学报, 2016, 32(7):1919-1933.

    Google Scholar

    [18] 杨婧, 王金荣, 张旗, 等.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J].地质通报, 2016, 35(12):1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001

    CrossRef Google Scholar

    [19] 汪云亮, 张成江.玄武岩类形成的大地构造环境的Th/HfTa/Hf图解判别[J].岩石学报, 2001, 17(3):413-421.

    Google Scholar

    [20] 李玉琼, 杜雪亮, 金维浚, 等.大洋中脊、洋岛、岛弧玄武岩中橄榄石的对比研究[J].地质科学, 2018, 53(4):1228-1239.

    Google Scholar

    [21] 韩帅, 李明超, 任秋兵, 等.基于大数据方法的玄武岩大地构造环境智能挖掘判别与分析[J].岩石学报, 2018, 34(11):3207-3216.

    Google Scholar

    [22] 焦守涛, 周永章, 张旗, 等.基于GEOROC数据库的全球辉长岩大数据的大地构造环境智能判别研究[J].岩石学报, 2018, 34(11):3189-3194.

    Google Scholar

    [23] Vermeesch P. Tectonic discrimination of basalts with classification trees[J]. Geochimica et Cosmochimica Acta, 2006, 70(7):1839-1848. doi: 10.1016/j.gca.2005.12.016

    CrossRef Google Scholar

    [24] 朱林奇, 张冲.谱聚类-Adaboost集成数据挖掘算法在岩性识别中的应用[J].中国科技论文, 2016, 11(5):545-550. doi: 10.3969/j.issn.2095-2783.2016.05.014

    CrossRef Google Scholar

    [25] 韩启迪, 张小桐, 申维.基于梯度提升决策树(GBDT)算法的岩性识别技术[J].矿物岩石地球化学通报, 2018, 37(6):1173-1180.

    Google Scholar

    [26] Lehnert K, Su Y, Langmuir C H, et al. A global geochemical database structure for rocks[EB/OL] [2019-04-10] https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/1999GC000026 Geochemistry, Geophysics, Geosystems, 2000.

    Google Scholar

    [27] Phan A V, Nguyen M L, Bui L T. Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems[J]. Applied Intelligence, 2017, 46(2):455-469. doi: 10.1007/s10489-016-0843-6

    CrossRef Google Scholar

    [28] Luo X, Xu Y, Wang W, et al. Towards enhancing stacked extreme learning machine with sparse autoencoder by correntropy[J]. Journal of the Franklin Institute, 2018, 355(4):1945-1966. doi: 10.1016/j.jfranklin.2017.08.014

    CrossRef Google Scholar

    [29] Luo X, Sun J, Wang L, et al. Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11):4963-4971. doi: 10.1109/TII.2018.2854549

    CrossRef Google Scholar

    [30] Gorissen D, Couckuyt I, Demeester P, et al. A surrogate modeling and adaptive sampling toolbox for computer based design[J]. Journal of Machine Learning Research, 2010, 11(Jul):2051-2055.

    Google Scholar

    [31] Yan R, Ma Z, Zhao Y, et al. A decision tree based data-driven diagnostic strategy for air handling units[J]. Energy and Buildings, 2016, 133:37-45. doi: 10.1016/j.enbuild.2016.09.039

    CrossRef Google Scholar

    [32] 卢东标.基于决策树的数据挖掘算法研究与应用[D].武汉理工大学硕士学位论文, 2008.

    Google Scholar

    [33] Mantovani R G, Horváth T, Cerri R, et al. Hyper-parameter tuning of a decision tree induction algorithm[C]//2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2016: 37-42.

    Google Scholar

    [34] Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, et al. Machine learning predictive models for mineral prospectivity:An evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71:804-818. doi: 10.1016/j.oregeorev.2015.01.001

    CrossRef Google Scholar

    [35] Hastie T, Rosset S, Zhu J, et al. Multi-class AdaBoost[J]. Statistics and Its Interface, 2009, 2(3):349-360. doi: 10.4310/SII.2009.v2.n3.a8

    CrossRef Google Scholar

    [36] 杜雪亮, 李玉琼, 金维浚, 等.镁铁质-超镁铁质岩浆岩中单斜辉石的智能分析研究[J].地质科学, 2018, 53(4):1215-1227.

    Google Scholar

    [37] Snoek J, Larochelle H, Adams R P. Practical bayesian optimization of machine learning algorithms[C]//Advances in neural information processing systems. 2012: 2951-2959.

    Google Scholar

    [38] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python[J]. Journal of Machine Learning research, 2011, 12(Oct):2825-2830.

    Google Scholar

    [39] Altmann A, Toloşi L, Sander O, et al. Permutation importance:a corrected feature importance measure[J]. Bioinformatics, 2010, 26(10):1340-1347. doi: 10.1093/bioinformatics/btq134

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1739) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint