Citation: | XIANG Anping, CHEN Yuchuan, SHE Hongquan, LI Guangming, LI Yingxu. Chronology and geochemical characteristics of quartz diorite in Gegen' aobao, Dong Ujimqin Banner, Inner Mongolia, and its geological significance[J]. Geological Bulletin of China, 2019, 38(9): 1469-1483. |
The newly found Gegen'aobao lead-zinc deposit is within the quartz diorite. Because the exploration is insufficient, the metal resources are unclear. As a newly found deposit, there is no previous research data, and hence systematic isotope dating must be done to determine the age of metallogenesis for the deposit. The U-Pb dating shows that the quartz diorite has the ages of 299±1~301±1Ma. Major element geochemistry shows that the quartz diorite is characterized by high SiO2 and K2O, whereas trace element geochemistry shows that the quartz diorite is a "right-inclined" shape in the chondrite-normalized REE patterns. The rocks are rich in large ion lithophile elements (K, Rb, Ba) and LREEs and depleted in high field strength elements (Th, Nb, Sr, P, Ti) and HREE, with the loss of high field strength elements (HFSEs) such as Th, Nb, P and Ti. The quartz diorite is of high-K calc-alkaline series and has a little negative Eu anomaly (Eu/Eu*=0.80~0.91), with low A/CNK (0.79~0.95). These characteristics shows that the Gegenaobao quartz diorite is mantle source granite. The in situ zircon Hf isotopic data are in agreement with U-Pb age data of zircon grains, and the 176Hf/177Hf isotopic ratio of the quartz diorite is 0.282906~0.282984, with εHf(t) values >0, indicating that the source region of the quartz diorite magma was depleted mantle or newly created lower continental crust beneath the study area. Based on geochemistry, isotopes and regional tectonic evolution history, the authors hold that the quartz diorite was derived from a depleted mantle, which was probably related to an active continental margin arc environment.
[1] | Wang T, Guo L, Zhang L, et al. Timing and evolution of JurassicCretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97:365-392. doi: 10.1016/j.jseaes.2014.10.005 |
[2] | Xu B. The Central Asian Orogenic Belt in northern China:Preface. Journal of Asian Earth Sci., 2015, 97:179-182. doi: 10.1016/j.jseaes.2014.11.019 |
[3] | Xu B, Song S, Nie F. The Central Asian Orogenic Belt in northern China:Preface[J]. Journal of Asian Earth Sciences, 2015, 97:179-182. doi: 10.1016/j.jseaes.2014.11.019 |
[4] | Xu B, Zhao P, Wang Y Y, et al. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China. Journal of Asian Earth Sciences. 2015c, 97:183-196. doi: 10.1016/j.jseaes.2014.07.020 |
[5] | Si H J, Bagas L, Peng H, et al. Muscovite Ar-Ar, molybdenite ReOs and zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite-related Shamai tungsten deposit in East Inner Mongolia, China:implications for the timing of mineralization and ore genesis[J]. Lithos, 2015, in publication. |
[6] | Mao J W, Zhang Z C, Zhang Z H, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the Northern Qilian Mountains and its geological significance[J]. Geochimca et Cosmochimica Acta, 1999, 63(11/12):1815-1818. |
[7] | Mao J W, Wang Y T, Zhang Z H, et al. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas[J]. Science China Earth Sciences, 2003, 46(8):839-851. |
[8] | 聂凤军, 胡朋, 江思宏, 等.中蒙边境沙麦-玉古兹尔地区钨和钨(钼)矿床地质特征, 形成时代和成因机理[J].地球学报, 2010, 3:383-394. |
[9] | 佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012, 28(2):571-594. |
[10] | 向安平, 杨郧城, 李贵涛, 等.黑龙江多宝山斑岩Cu-Mo矿床成岩成矿时代研究[J].矿床地质, 2012, 6:1237-1248. doi: 10.3969/j.issn.0258-7106.2012.06.009 |
[11] | 向安平, 佘宏全, 陈毓川, 等.内蒙古红花尔基钨钼矿云英岩化白云母Ar-Ar定年及其地质意义[J].岩矿测试, 2016, 1:108-116. |
[12] | Li W, Hu C, Zhong R, et al. U-Pb, 39Ar/40Ar geochronology of themetamorphosed volcanic rocks of the Bainaimiao Group in centralInner Mongolia and its implications for ore genesis and geodynamic setting[J]. Asian Earth Journal of Sciences, 2015, 97:251-259. doi: 10.1016/j.jseaes.2014.06.007 |
[13] | Wu G, Chen Y C, Sun F Y, et al. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 2015, 97:229-250. doi: 10.1016/j.jseaes.2014.07.031 |
[14] | Wang F, Xu W L, Xu Y G, et al. Late Triassic bimodaligneous rocks in eastern Heilongjiang Province, NE China:implications for theinitiation of subduction of the Paleo-Pacific Plate beneath Eurasia[J]. Journal of Asian Earth Sciences, 2015, 97:406-423. doi: 10.1016/j.jseaes.2014.05.025 |
[15] | Wang Z Z, Han B F, Feng L X, et al Geochronology, geochemistry andorigins of the Paleozoic-Triassic plutons in the Langshan area, western InnerMongolia, China[J]. Journal of Asian Earth Sciences, 2015, 97:337-351. doi: 10.1016/j.jseaes.2014.08.005 |
[16] | Wang Z W, Pei F P, Xu W L, et al. Geochronology andgeochemistry of Late Devonian and early Carboniferous igneous rocks of centralJilin Province, NE China:implications for the tectonic evolution of the eastern Central Asian Orogenic Belt[J]. Asian Earth Sci., 2015, 97:260-278. doi: 10.1016/j.jseaes.2014.06.028 |
[17] | Kravchinsky V A, Konstantinow K M, Cogne J P. Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia:was the Siberian platform assembled at this time?[J]. Precambrian Research, 2001, 110:61-92. doi: 10.1016/S0301-9268(01)00181-4 |
[18] | Cogne J P, Kravchinsky V A, Halim N, et al. Late Jurassic-Early Cretaceous closure of the Mongol-Okhoysk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baikal area (SE Siberian)[J]. Geophysical Journal International, 2005, 163:823-832. |
[19] | Metelkin D V, Gordienko I V, Klimuk V S. Paleomagnetism of Upper Jurassic basalts from Transbaikalia:new data on the time of closure of the Mongol-Okhotsk Ocean and Mesozoic intraplate tectonics of Central Asia[J]. Russian Geology and Geophysics, 2007, 48:825-834. doi: 10.1016/j.rgg.2007.09.004 |
[20] | 宋彪, 张玉海, 刘敦一.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J].质谱学报, 2002, (1):58-62. doi: 10.3969/j.issn.1004-2997.2002.01.011 |
[21] | Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004 |
[22] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082 |
[23] | Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55:1535-1546. doi: 10.1007/s11434-010-3052-4 |
[24] | 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 4:481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 |
[25] | Sláma J, Kosler J, Condon D J.Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35. doi: 10.1016/j.chemgeo.2007.11.005 |
[26] | 侯可军. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604 doi: 10.3969/j.issn.1000-0569.2007.10.025 |
[27] | Morel M L A, Nebel O, Nebel-Jacobsen Y J. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255:231-235. doi: 10.1016/j.chemgeo.2008.06.040 |
[28] | HofmannAW. Chemical differentiation of the earth:The relationship between mantle, continental crust, and oceanic crust[J]. Earth Planetary Science Letters, 1988, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X |
[29] | Kelemen P B, H Angh K, Greenem A R. One view of thegeochemistry of subduction-related magmat ic arcs, with anemphasison primitive andesite and lowercrust[J]. Treatise On Geochemistry, 2003, 3:593-659. |
[30] | Zhou J B, Wang B, Wilde S A. Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists inthe Great Xing an Range, northeast China, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 97:197-210. doi: 10.1016/j.jseaes.2014.07.011 |
[31] | Han G Q, Liu Y J, Neubauer F. U-Pb age and Hf isotopic data of detrital zircons from the Devonian andCarboniferous sandstones in Yimin area, NE China:New evidences to thecollision timing between the Xing'an and Erguna blocks in eastern segment of Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 97:211-228. doi: 10.1016/j.jseaes.2014.08.006 |
[32] | Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2):1-24. |
[33] | 陈斌, 赵国春, Wi lde S A.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. doi: 10.3321/j.issn:0371-5736.2001.04.005 |
[34] | 鲍庆中, 张长捷, 吴之理, 等.内蒙古白音高勒地区石炭纪石英闪长岩SHRIM P锆石U-Pb年代学及其意义[J].吉林大学学报(地球科学版), 2007, 37(1):15-23. |
[35] | 鲍庆中, 张长捷, 吴之理, 等.内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义[J].中国地质, 2007, 34(5):790-798. doi: 10.3969/j.issn.1000-3657.2007.05.005 |
[36] | 刘建峰, 迟效国, 张兴洲, 等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 3:365-376. |
[37] | Zheng Y F, Zhao Z F, Wu F B, et al. Zircon U-Pb age, Hf and O isotope constrains on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogeny[J]. Chem. Geol., 2006, 231:135-158. doi: 10.1016/j.chemgeo.2006.01.005 |
[38] | 郑永飞, 陈仁旭, 张少兵, 等.大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究[J].岩石学报, 2007, 2:317-330. |
The tectonic location (a) and relationship of the study area with the metallogenic belt in China (b)
The regional geological map of Gegen'aobao
Cross section along No. 3 exploration line
Cathodoluminescence images of representative zircons from the quartz diorite at Gegen'aobao
Zircon U–Pb concordia diagrams for the quartz diorite at Gegen'aobao
SiO2-K2O(a) and A/CNK-A/NK (b) plots for the quartz diorite at the Gegen'aobao deposit
Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider diagram (b) for the quartz diorite at the Gegen'aobao deposit
U-Pb age (t) versus t-εHf(t) diagram (a) and U-Pb age (t) versus 176Hf/177Hf (b) at the Gegen'aobao deposit
Tectonic discrimination diagrams of the quartz diorite from the Gegen'aobao deposit