2019 Vol. 38, No. 9
Article Contents

WANG Jiaxing, XIAO Liang, JIANG Kui, HUANG Huaxin, ZHANG Shunxin, NING Yongyun, XIE Biaowu, LIU Wei, TANG Zhixiang. Geochemical characteristics, zircon U-Pb ages and geological implications of the eastern Innermongolia in Yanggeliya Mountain intermediate-acid rock[J]. Geological Bulletin of China, 2019, 38(9): 1455-1468.
Citation: WANG Jiaxing, XIAO Liang, JIANG Kui, HUANG Huaxin, ZHANG Shunxin, NING Yongyun, XIE Biaowu, LIU Wei, TANG Zhixiang. Geochemical characteristics, zircon U-Pb ages and geological implications of the eastern Innermongolia in Yanggeliya Mountain intermediate-acid rock[J]. Geological Bulletin of China, 2019, 38(9): 1455-1468.

Geochemical characteristics, zircon U-Pb ages and geological implications of the eastern Innermongolia in Yanggeliya Mountain intermediate-acid rock

More Information
  • The Yanggeliya Mountain is located in the Oroqen Autonomous Banner, Hulunbuir City, eastern Inner Mongolia. Syenogranite, monzoniticgranite and tonalite are the main rocks, and the LA-ICP-MS zircon U-Pb age indicates that the emplacement time is Early Cretaceous (130.4 ±1.1Ma) for syenogranite, 126.6 ±3.0Ma for monzoniticgranite, 131.6 ±1.1Ma and 130.7±1.5Ma for tonalite. The study of rock geochemistry shows that the granite body is characterized by rich silicon and alkali, and depletion of calcium, belonging to the quasi-aluminum-peraluminous, high-potassic, calcium-alkali series of rocks. The total amount of rare earths is relatively low, the fractionation between LREE and HREE is obvious, and the (La/Nb)N values are between 9.14 and 24.86. The Eu has obvious positive anomalies (the δEu values are in the range of 1.03~1.53). As for trace elements, the values of K, La, Sr and Gd are obviously enriched, whereas Nb, Pr, P and Ti are depleted. Large ionic lithophile elements are enriched with relatively high field strength elements. The rock differentiation index DI averages 80.63. The above characteristics are similar to those of highly differentiated I-type granites. The source of magma was the crust-derived magma series, which was the product of the partial melting of continental crust rock, and the tectonic setting was a stretching environment which was closely related to subduction of ancient Pacific plate.

  • 加载中
  • [1] 葛文春, 吴福元, 周长勇, 等.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义[J].科学通报, 2007, 52(20):2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012

    CrossRef Google Scholar

    [2] Xiao W J, Windley B F, Huang B C, et al. End-Permian to midTriassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6):1189-1217. doi: 10.1007/s00531-008-0407-z

    CrossRef Google Scholar

    [3] 佘宏全, 李红红, 李进文, 等.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J].地质学报, 2009, 83(10):1456-1472. doi: 10.3321/j.issn:0001-5717.2009.10.010

    CrossRef Google Scholar

    [4] 朱伟, 郑婧, 李静.兴蒙造山带构造演化过程探讨[J].地下水, 2013, 35(5):122-124. doi: 10.3969/j.issn.1004-1184.2013.05.046

    CrossRef Google Scholar

    [5] 龙舟, 来林, 张学斌, 等.内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J].地质与勘探, 2017, (6):1115-1128. doi: 10.3969/j.issn.0495-5331.2017.06.007

    CrossRef Google Scholar

    [6] 关庆彬, 李世超, 张超, 等.兴蒙造山带南缘东段和龙地区Ⅰ型花岗岩锆石U-Pb定年、地球化学特征及其地质意义[J].岩石学报, 2016, 32(9):2690-2706.

    Google Scholar

    [7] 洪大卫.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 2000, (2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012

    CrossRef Google Scholar

    [8] Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern Segment of the northern margin of the North China Block[J]. Lithos, 2013, 170/171:191-207. doi: 10.1016/j.lithos.2013.03.006

    CrossRef Google Scholar

    [9] Wang Fei, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth & Planetary Science Letters, 2006, 251(1):179-198.

    Google Scholar

    [10] Fan W M, Guo Feng, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 2003, 121(1):115-135.

    Google Scholar

    [11] Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3):155-174.

    Google Scholar

    [12] 李世超, 徐仲元, 刘正宏, 等.大兴安岭中段玛尼吐组火山岩LAICP-MS锆石U-Pb年龄及地球化学特征[J].地质通报, 2013, 32(2):399-407. doi: 10.3969/j.issn.1671-2552.2013.02.018

    CrossRef Google Scholar

    [13] 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178. doi: 10.3321/j.issn:1000-2383.2000.02.012

    CrossRef Google Scholar

    [14] 徐美君, 许文良, 王枫, 等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报, 2013, 29(2):354-368.

    Google Scholar

    [15] Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range[J].Lithos, 2008, 102(1/2):138-157.

    Google Scholar

    [16] 周建波, 王斌, 曾维顺, 等.大兴安岭地区扎兰屯变质杂岩的碎屑锆石U-Pb年龄及其大地构造意义[J].岩石学报, 2014, 30(7):1879-1888.

    Google Scholar

    [17] 许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353.

    Google Scholar

    [18] Liu Y S, Gao S, Hu Z C, et al.Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the TransNorth China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2009, 51(1/2):537-571

    Google Scholar

    [19] Ludwig K R. Users manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochron. Cent. Spec. Pub, 2003, 4:25-32.

    Google Scholar

    [20] Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy & Petrology, 1999, 134(4):380-404.

    Google Scholar

    [21] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2010, 18(4):423-439.

    Google Scholar

    [22] De la Roche H, Leterrier J, Grande Claude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-its relationship and current nomenclature[J]. Chemical Geology, 1980, 29(1):183-210.

    Google Scholar

    [23] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [24] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [25] Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [26] 李莉.安徽铜陵地区基性岩特征与成因[D].中国地质大学(北京)硕士学位论文, 2010.http://cdmd.cnki.com.cn/Article/CDMD-11415-2010085856.htm

    Google Scholar

    [27] Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 115 and 210GPa:Implication for the origin of adakites[J]. Contributions to Mineralogy and Petrology, 1994, 117:394-409. doi: 10.1007/BF00307273

    CrossRef Google Scholar

    [28] Stevens G, Villaros A, Moyen J F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites[J]. Geology, 2007, 35(1):9-12.

    Google Scholar

    [29] Papoutsa A, Pepiper G, Piper D J W. Systematic mineralogical diversity in A-type granitic intrusions:Control of magmatic source and geological processes[J]. Geological Society of America Bulletin, 2016, 128(3):487-501.

    Google Scholar

    [30] Eby G N. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7):641. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [31] Champion D C, Chappell B W. Petrogenesis of felsic I-type granites:an example from northern Queensland. Trans R Soc Edinb Earth Sci[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):115-126.

    Google Scholar

    [32] Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 1987, 95(4):407-419.

    Google Scholar

    [33] Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh Earth Sciences, 1992, 83(1/2):1-26.

    Google Scholar

    [34] Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3

    CrossRef Google Scholar

    [35] Chappell B W, White A J R. Two contrasting granite types:25 years later[J]. Journal of the Geological Society of Australia, 2015, 48(4):489-499.

    Google Scholar

    [36] Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1):89-106.

    Google Scholar

    [37] 张旗, 王元龙, 金惟俊, 等.造山前、造山和造山后花岗岩的识别[J].地质通报, 2008, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001

    CrossRef Google Scholar

    [38] 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001

    CrossRef Google Scholar

    [39] Chappell B W, White A Jr. Two constrasting granitetypes[J]. Pacific Geol., 1974. 8:173-174.

    Google Scholar

    [40] 陶继华, 李武显, 李献华, 等.赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J].中国科学:地球科学, 2013, 43(5):770-788.

    Google Scholar

    [41] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy & Petrology, 1982, 80(2):189-200.

    Google Scholar

    [42] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [43] 徐克勤, 胡受奚, 孙明志, 等.论花岗岩的成因系列——以华南中生代花岗岩为例[J].地质学报, 1983, (2):3-14.

    Google Scholar

    [44] Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (Ⅰ):geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4):241-273.

    Google Scholar

    [45] Taylor S R, McLennan S M. The Continental Crust:Its Compositon and Evolution[M]. Oxford:Blackwell Scientific, 1985, 94(4):1-312.

    Google Scholar

    [46] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4):347-359.

    Google Scholar

    [47] Bea F, Arzamastsev A, Montero P, L Arzamastseva. Anomalous alkaline rocks of Soustov, Kola:evidence of mantle-derived metasomatic fluids affecting crustal materials[J]. Contributions to Mineralogy & Petrology, 2001, 140(5):554-566.

    Google Scholar

    [48] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise Geochem, 2003, 3:1-64.

    Google Scholar

    [49] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [50] Brown G C. Calc-alkaline intrusive rocks: their diversity, evolution and relation to volcanic arcs[C]//Andesites Orogenic Andesites and Related Rocks. New York: John Wiley and Sons, 1982, 1437-4641.

    Google Scholar

    [51] Roberts M P, Clemens J D. Origin of high-potassium, talcalkaline, I-type granitoids[J]. Geology, 1993, 21(9):825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    CrossRef Google Scholar

    [52] Fritzell E H, Bull A L, Shephard G E. Closure of the MongolOkhotsk Ocean:insights from seismic tomography and numerical modeling[J]. Earth and Planetary Science Letters, 2016, 445:1-12. doi: 10.1016/j.epsl.2016.03.042

    CrossRef Google Scholar

    [53] 刘勃然, 李伟, 张守志, 等.大兴安岭北段伸展构造[J].吉林大学学报(地球科学报), 2016, 46(5):1440-1448.

    Google Scholar

    [54] 环文林, 时振梁, 鄢家全.中国东部及邻区中新生代构造演化与太平洋板块运动[J].地质科学, 1982, (2):179-190.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1584) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint