Citation: | QIAO Xinxing, ZHOU Bin, HAN Kui, PAN Liang, WANG Feng, ZHAO Huanqiang. Geochemistry, chronology and zircon Lu-Hf isotopic characteristics of the Miren rocks in Riduo area of east part of Southern Gangdise belt and their geological significance[J]. Geological Bulletin of China, 2019, 38(9): 1417-1430. |
The Miren rock in the Riduo Area is located in the eastern part of southern Gangdise belt. Zircon U-Pb dating of two samples reveals that the formation ages are 54.9±1.6Ma and 48.6±0.5Ma, and SiO2 content of the rock is 60.18%~71.53%, total alkali content is 5.85%~7.49%, K2O/Na2O ratio is 0.58~1.05, and Liteman index (σ) is 1.79~2.30, suggesting calc-alkaline rocks, with A/CNK value being 0.85~0.95. The diagram shows a quasi-aluminous rock with characteristics of type I granite. The light rare earth and large lithosphere ionic elements (Rb, K, Ba, Th, and U) are relatively enriched, and the characteristics of heavy rare earth and high-field strength elements (Nb, P, Hf, Ti) are relatively depleted with weak negative Eu anomalies, showing features of volcanic arc magma. The ratio of 176Hf/177Hf is 0.282819~0.283036, 0.282945 on average. The Hf isotope two-stage model is younger (613~719Ma) and the εHf(t) value is between 2.74 and 10.47, indicating that the magma source area was part of the new genetic crust. Melting or mantle material was involved in the rock-forming process. According to C/MF-A/MF mapping analysis, it may be basic or iron-magnesian magmatic intrusion, resulting in melting of material in the middle and lower crust. The formation of the Riduo granodiorite may have been related to the rotation and separation of the Neo-Tethys plate.
[1] | 莫宣学.岩浆作用与青藏高原演化[J].高校地质学报, 2011, 17(3):352-354. |
[2] | 刘峰, 张泽明, 董昕, 等.青藏高原冈底斯带东南部新生代多期岩浆作用及其构造意义[J].岩石学报, 2011, 27(11):3296-3305. |
[3] | 管琪, 朱弟成, 赵志丹, 等.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物[J].岩石学报, 2010, 6(7):2166. |
[4] | Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in Gangdise magmatic belt during the India-Asia collision:Zircon SHIRMP U-Pb dating[J]. Acta Geologica Sinica, 2005, 79:66-76. doi: 10.1111/j.1755-6724.2005.tb00868.x |
[5] | Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continentalcollision:Evidence from Cenozoic igneous rocks in southern Tibet[J]. Lithos, 2007, 96:225-242. doi: 10.1016/j.lithos.2006.10.005 |
[6] | Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collisionzones:Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31:1021-1024. doi: 10.1130/G19796.1 |
[7] | Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220:139-155. doi: 10.1016/S0012-821X(04)00007-X |
[8] | Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on theMesozoic tectonics and crustal evolution of Southern Tibet[J]. Geology, 2007, 34:745-748. |
[9] | 张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 |
[10] | 纪伟强, 吴福元, 锺孙霖, 等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学(D辑), 2009, 39(7):849-871. |
[11] | 孟元库, 许志琴, 陈希节, 等.冈底斯中段碱长花岗岩锆石UPb-Hf同位素特征及地质意义[J].中国地质, 2015, 42(5):1203-1213. |
[12] | 孟元库, 许志琴, 陈希节, 等.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义[J].大地构造与成矿学, 2015, 39(5):933-945. |
[13] | 董瀚, 齐玥, 马涛, 等.拉萨地块南部冈底斯~50Ma负εNd(t)花岗质侵入岩的发现及其地质意义[J].大地构造与成矿学, 2017, 41(3):604-616. |
[14] | 王立全, 潘桂堂, 丁俊, 等.青藏高原及邻区地质图及说明书(1:1500000)[M].北京:地质出版社, 2013:9-48. |
[15] | 夏代祥, 刘世坤.西藏自治区岩石地层[M].武汉:中国地质大学出版社, 1997:72-83. |
[16] | 路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004 |
[17] | Sun S S, McDonough W F. Chemical and isotopic systematic of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publicatin, 1989, 42(1): 313-345. |
[18] | Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chem. Geol., 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X |
[19] | Ludwig K R. Users manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochron. Cent. Spec. Pub., 2003, 4:25-32. |
[20] | Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICPMS[J]. Chemical Geology, 2008, 247:100-117. doi: 10.1016/j.chemgeo.2007.10.003 |
[21] | Irvine T N, Baragar W R A. A guide to the chemical classification of ht common volcanic rocks[J]. Earth-Science Reviews, 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9 |
[22] | Peccerillo A, Talor A R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contribution to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745 |
[23] | Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 |
[24] | Collins W J, Beams S D, White A J R. et al. Nature and origin of A type granites with paticular reference to Southeastern Australia[J]. Contrib. Miner. Petro., 1982, 80:189-200. doi: 10.1007/BF00374895 |
[25] | Wood D A, Joron J L, Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic setting[J]. Earth Planet. Sci. Lett., 1979, 45:326-336. doi: 10.1016/0012-821X(79)90133-X |
[26] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. |
[27] | Vervoort J D, Patchett P J, Gehrels G E, et al. Constraints on early earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379:624-627. doi: 10.1038/379624a0 |
[28] |
孟元库.藏南冈底斯中段南缘构造演化[D].中国地质科学院博士学位论文, 2016. |
[29] | Elburg M A, Van Bergen M, Hoogewerff J, et al. Geochemica ltrendsacrossan arc-continentcollision zone:Magma sources and slab-wedge transferprocesses below the Pantar Strait volcanoes[J]. Indonesia Geochimicaet Cosmochimica Acta, 2002, 66:2771-2789. doi: 10.1016/S0016-7037(02)00868-2 |
[30] | Guo Z, Hertogen J, Liu J, et al. Potassic magmatism in western Sichunand Yunnan provinces, SE Tibet, China Petrological and geochemical constraints on petrogenesis[J]. Journal of Petrology, 2005, 46:33-78. doi: 10.1093/petrology/egh061 |
[31] | 韩奎, 周斌, 乔新星, 等.拉萨地块南缘日多地区叶巴组火山岩地球化学、年代学、锆石Lu-Hf同位素特征及其地质意义[J].地质通报, 2018, 37(8):100-103. |
[32] | 白涛, 樊炳良, 肖霞, 等.西藏玉龙斑岩铜矿带夏日多矿区始新世岩浆活动与成矿作用——来自锆石U-Pb年龄、地球化学的证据[J].地质通报, 2019, 38(2/3):324-326. |
[33] | Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline I-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany)[J].Lithos, 2000, 50:51-73. doi: 10.1016/S0024-4937(99)00052-3 |
[34] | 莫宣学, 赵志丹, 喻学惠, 等.青藏高原新生代碰撞-后碰撞火成岩[M].北京:地质出版社, 2009:1-5. |
[35] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956 |
[36] | Yang T S, Ma Y M, Bian W W, et al. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas:Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision[J]. Earth and Planetary Science Letters, 2015, 428:2:1-133. |
[37] | H X M, Garzanti E, Moore T, et al. Direct stratigraphic dating of India-Asia collision at the Selandian (middle Paleocene, 59±1Ma)[J]. Geology, 2015, 43(10):859-862. doi: 10.1130/G36872.1 |
[38] | Zhu D C, Wang Q, Zhao Z D, et al. Magmatic record of ndiaAsia collision[J]. Scientific Reports, 2015, 5:14289, doi:10.1038/srep14289. |
[39] | 李皓扬, 钟孙霖, 王彦斌, 等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据[J].岩石学报, 2007, 23(2):494-499. |
[40] | 李忠海.大陆俯冲-碰撞-折返的动力学数值模拟研究综述[J].中国科学:地球科学, 2014, 44(5):817-841. |
[41] | Duretz T, Schmalholz S M, Gerya T V. Dynamics of slab detachment[J]. Geochem. Geophys. Geosyst., 2012, 13:Q03020, doi:10.1029/2011GC004024. |
[42] | 莫学宣, 赵志丹, 邓晋福, 等.印度-亚洲大陆主碰撞过程的火山作用相应[J].地学前缘, 2003, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 |
[43] | 周肃, 莫学宣, 董国臣, 等.西藏林周盆地林子宗火山岩40Ar-39Ar年代格架[J].科学通报, 2001, 49(20):2095-2103. |
[44] | 朱弟成, 王青, 赵志丹.岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例[J].中国科学:地球科学, 2017, 47(6):657-673. |
[45] | 周斌, 韩奎, 乔新星, 等.西藏日多地区古近纪双峰式脉岩年代学、地球化学及其揭示的伸展背景[J].矿产勘查, 2018, 9(9):1753-1754. |
① | 张显廷, 周光弟, 杨延兴. 1: 20万下巴淌(沃卡)幅区域地质调查报告.青海地矿局区调队, 1994. |
Tectonic position (a) and geological map (b) of Riduo area
Outcrop (a, b) and microscopic (c, d) photos of Miren rocks in Riduo area
TAS (a) and SiO2-K2O (b) diagrams of Miren rocks in Riduo area
A/CNK-A/NK (a) and K2O-NaO2 (b) diagrams of Miren rocks in Riduo area
Chondrite-normalized REE patterns (a) and primitive mantle normalized spider diagram (b) of Miren rocks in Riduo area
CL images and analyzing locations of zircons from Miren rocks in Riduo area
Zircon concordia diagram (a) and 206Pb/238U age weighted average value diagram (b) of Miren rocks in Riduo area
Diagram of t-εHf(t) (a) and histogram of tDM2(b) for Miren rocks in Riduo area
C/MF-A/MF discrimination diagram(a)and tectonic discrimination diagrams(b, c)of Miren rocks in Riduo area
Eocene tectonic-magmatic evolution pattern of the eastern Gangdise belt