2019 Vol. 38, No. 9
Article Contents

HAN Fei, HUANG Yonggao, LI Yingxu, JIA Xiaochuan, YANG Xuejun, YANG Qingsong, YAN Gang, LI Daoling. The identification of the Eocene magmatism and tectonic significance in the middle Gangdise magmatic belt, Nanmulin area, Tibet[J]. Geological Bulletin of China, 2019, 38(9): 1403-1416.
Citation: HAN Fei, HUANG Yonggao, LI Yingxu, JIA Xiaochuan, YANG Xuejun, YANG Qingsong, YAN Gang, LI Daoling. The identification of the Eocene magmatism and tectonic significance in the middle Gangdise magmatic belt, Nanmulin area, Tibet[J]. Geological Bulletin of China, 2019, 38(9): 1403-1416.

The identification of the Eocene magmatism and tectonic significance in the middle Gangdise magmatic belt, Nanmulin area, Tibet

  • The Nanmulin rock is located in the southern Gangdise center. In this study, the authors conducted systematical zircon LA-ICP-MS U-Pb dating and whole-rock geochemical analysis for the monzonitic granite in Nanmulin. The zircon U-Pb analyses demonstrate that the crystallization and emplacement age of the plutons is 50.24 ±0.68Ma, suggesting Eocene magmatic activities. It is an important part of the Gangdise batholith. Geochemical characteristics show that Rittmann index(σ) is 1.66~1.94, implying calc-alkaline series. The Al2O3 varies in the range of 11.82%~12.45%, whereas A/CNK varies in the range of 1.11~1.15, suggesting peraluminous characteristics. The granite is characterized by high SiO2(77.4%~78.18%, averagely 77.82%), high K (shoshonite series). Rb, Th, U and LREE are enriched but Nb, Ta, Zr and HREE are depleted, suggesting arc-related or earth crust geochemical affinities. Sm/Nd varies from 0.45 to 0.57, averagely 0.53, suggesting the deep source characteristics of magma. (La/Yb)N is high, averagely 9.25, suggesting enrichment of the LREE and depletion of HREE, with clear negative Eu anomaly. In summary, the process of granite petrogenesis resulted from subduction or breakoff of the Tethyan Ocean crust experiencing dehydration. This action resulted in partial melting of overlying mantle wedge and caused upward migration of basaltic magma near Moho. Huge thermal baking forces caused partial melting of the lower crust (clay-rich or argillaceous rocks). Magma mixing occurred from both basaltic magma and felsic magma. Nanmulin granite with MME was formed. This study provides isotope age evidence on the time of the closure of the Tethyan Ocean and Indian-Asian continental collision. Moreover, it enriches the diagenetic model and geochemical characteristics of Gangdise rock.

  • 加载中
  • [1] 潘桂棠, 刘玉平, 郑来林, 等.青藏高原碰撞构造与效应[M].广州:广东科技出版社, 2013:1-3.

    Google Scholar

    [2] 莫宣学, 赵志丹, 周肃, 等.印度-亚洲大陆碰撞的时限[J].地质通报, 2007, 26(10):1240-1244. doi: 10.3969/j.issn.1671-2552.2007.10.002

    CrossRef Google Scholar

    [3] 莫宣学.岩浆作用与青藏高原演化[J].高校地质学报, 2011, 17(3):351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001

    CrossRef Google Scholar

    [4] 马昭雄, 张彤, 黄波, 等.西藏错龙错晚三叠世粗粒巨斑二长花岗岩锆石U-Pb年龄和地球化学特征[J].地质通报, 2018, 37(7):1202-1212.

    Google Scholar

    [5] 莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, (3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001

    CrossRef Google Scholar

    [6] 孟元库, 许志琴, 高存山, 等.藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义[J].岩石学报, 2018, (3):513-546.

    Google Scholar

    [7] 纪伟强, 吴福元, 锺孙霖, 等.西藏南部冈底斯岩基花岗岩时代与岩石成因[J].中国科学(D辑), 2009, 39(7):849-871.

    Google Scholar

    [8] 张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩错石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011

    CrossRef Google Scholar

    [9] 王玉净, 松冈笃.藏南泽当雅鲁藏布缝合带中的三叠纪放射虫[J].微体古生物学报, 2002, 19(3):215-227. doi: 10.3969/j.issn.1000-0674.2002.03.001

    CrossRef Google Scholar

    [10] 李化启, 蔡智慧, 陈松永, 等.拉萨地体中的印支期造山事件及年代学证据[J].岩石学报, 2008, 24(7):1595-1604.

    Google Scholar

    [11] 李化启, 许志琴, 杨经绥, 等.拉萨地体内松多榴辉岩的同碰撞折返:来自构造变形和40Ar/39Ar年代学的证据田[J].地学前缘, 2011, 18(3):66-78.

    Google Scholar

    [12] 张雨轩, 解超明, 于云鹏, 等.早侏罗世新特提斯洋俯冲作用[J].地质通报, 2018, 37(8):1387-1399.

    Google Scholar

    [13] 董国臣, 莫宣学, 赵志丹, 等.冈底斯带西段那木如岩体始新世岩浆作用及构造意义[J].岩石学报, 2011, (7):1983-1992.

    Google Scholar

    [14] 夏斌, 李建峰, 张玉泉, 等.藏南冈底斯带西段麦拉花岗岩锆石SHRIMP定年及地质意义[J].大地构造与成矿学, 2008, (2):243-246. doi: 10.3969/j.issn.1001-1552.2008.02.014

    CrossRef Google Scholar

    [15] 喻思斌.冈底斯中段始新世复式花岗岩体的成因及其对构造演化的启示[D].南京大学硕士学位论文, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10284-1017097533.htm

    Google Scholar

    [16] 丁小稀.西藏南冈底斯东部新生代侵入岩地球化学与年代学[D].中国地质大学(北京)硕士学位论文, 2016.http://cdmd.cnki.com.cn/Article/CDMD-11415-1016068154.htm

    Google Scholar

    [17] 周斌, 韩奎, 乔新星, 等.西藏日多地区古近纪双峰式脉岩年代学、地球化学及其揭示的伸展背景[J].矿产勘查, 2018, (9):1746-1757. doi: 10.3969/j.issn.1674-7801.2018.09.014

    CrossRef Google Scholar

    [18] 杜等虎, 杨志明, 李秋耘, 等.西藏厅宫矿区始新世斑岩的厘定及其地质意义[J].矿床地质, 2012, (4):745-757. doi: 10.3969/j.issn.0258-7106.2012.04.007

    CrossRef Google Scholar

    [19] 邓晋福, 冯艳芳, 狄永军, 等.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 2015, (3):473-484.

    Google Scholar

    [20] 叶丽娟.西藏拉萨地块南木林-羊八井岩浆岩的年代学和地球化学[D].中国地质大学(北京)硕士学位论文, 2013.

    Google Scholar

    [21] 徐峰, 丁枫, 李跃, 等.西藏措勤县诺仓地区始新世花岗岩岩石学特征及找矿方向[J].矿床地质, 2014, (S1):1037-1038.

    Google Scholar

    [22] 王莉.青藏高原南部冈底斯岩基东南缘晚侏罗世-早始新世岩浆作用[D].中国地质科学院硕士学位论文, 2013.http://cdmd.cnki.com.cn/Article/CDMD-82501-1016056696.htm

    Google Scholar

    [23] 朱弟成, 王青, 赵志丹, 等.大陆边缘弧岩浆成因与大陆地壳形成[J].地学前缘, 2018, 25(6):67-77.

    Google Scholar

    [24] 孟元库, 许志琴, 陈希节, 等.冈底斯中段碱长花岗岩锆石UPb-Hf同位素特征及地质意义[J].中国地质, 2015, 42(5):1202-1213. doi: 10.3969/j.issn.1000-3657.2015.05.003

    CrossRef Google Scholar

    [25] 莫宣学, 赵志丹, 邓晋福, 等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘, 2003, (3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013

    CrossRef Google Scholar

    [26] Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250(1/4):49-67.

    Google Scholar

    [27] Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3/4):191-201.

    Google Scholar

    [28] Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262(3/4):229-245.

    Google Scholar

    [29] Zhu D C, Wang Q, Zhao Z D, et al. Magmatic record of IndiaAsia collision[J]. Scientific Reports, 2015, 5:14289. doi: 10.1038/srep14289

    CrossRef Google Scholar

    [30] 董国臣, 莫宣学, 赵志丹, 等, 冈底斯岩浆带中段岩浆混合作用:来自花岗杂岩的证据[J].岩石学报, 2006, (4):835-844.

    Google Scholar

    [31] 李皓揚, 锺孙霖, 王彦斌, 等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据[J].岩石学报, 2007, (2):493-499.

    Google Scholar

    [32] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and preCenozoic evolution of the Tibet Plateau[J].Gondwana Research, 2013, (4):1429-1454.

    Google Scholar

    [33] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533.

    Google Scholar

    [34] Han Y C, Ghang S H, Pirajno F, et al. Evolution of the Mesozoic Granites in the Xiong'ershan-Waifangshan Region, Western Henan Province, China, and Its Tectonic Implications[J]. Acta Geologica Sinica, 2007, 81(2):253-256. doi: 10.1111/j.1755-6724.2007.tb00949.x

    CrossRef Google Scholar

    [35] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [36] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [37] Ludwig K R. User's Manual for Isoplot 3.00, a geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronological Center Special Publication, 2003, 4:25-32.

    Google Scholar

    [38] Maitre R W L. A alassification of Igneous Rocks and Glossary of Terms[M]. Blackwell Scientific Publications, 1989.

    Google Scholar

    [39] Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1):63-81.

    Google Scholar

    [40] Middlemost E A K. Naming Materials in the Magma/Igneous Rock System[J]. Annual Review of Earth & Planetary Sciences, 1994, 37(3/4):215-224.

    Google Scholar

    [41] Molnar P, Tapponnier P. Cenozoic Tectonics of Asia:Effects of A Continental Collision:Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189(4201):419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    [42] Sun S S, Mc Donough W F. Chemical and isotope Systematics of Oceanic Basalts: implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Geological Society London, Special Pulications, 1989, 12: 313-345.

    Google Scholar

    [43] Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust: Treaties on Geochemistry. Oxford Elsevier Pergamon, 2003: 1-64.

    Google Scholar

    [44] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [45] 孟元库, 许志琴, 陈希节, 等.藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义[J].大地构造与成矿学, 2015, 39(5):933-948.

    Google Scholar

    [46] Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision:Zircon SHRIMP U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(1):66-76. doi: 10.1111/j.1755-6724.2005.tb00868.x

    CrossRef Google Scholar

    [47] 董国臣, 莫宣学, 赵志丹, 等.西藏冈底斯南带辉长岩及其所反映的壳幔作用信息[J].岩石学报, 2008, 24(2):203-210.

    Google Scholar

    [48] Dong G C, Mo X X, Zhao Z D, et al. Geochronologic constraints on the magmatic underplating of the Gangdisê belt in the IndiaEurasia collision:Evidence of SHRIMP Ⅱ zircon U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(6):787-794. doi: 10.1111/j.1755-6724.2005.tb00933.x

    CrossRef Google Scholar

    [49] 丛源, 肖克炎, 翟庆国, 等.西藏南木林普洛岗岩体锆石定年和Hf同位素特征及其地质意义[J].吉林大学学报(地球科学版), 2012, 42(6):1783-1795.

    Google Scholar

    [50] 李洪梁, 李光明, 刘洪, 等.拉萨地体西段达若地区古新世花岗斑岩成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束[J].地球科学, 2019:1-27.doi:10.3799/dqkx.2019.034.

    CrossRef Google Scholar

    [51] 邓晋福, 赵海玲, 莫宣学, 等.大陆根柱构造——大陆动力学的钥匙[M].北京:地质出版社, 1996.

    Google Scholar

    [52] Kelemen P B, Hangh K, Greenem A R.On view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L. Treatise on Geochemistry, 2003, 3: 593-659.

    Google Scholar

    [53] 钟华明, 童劲松, 鲁如魁, 等.西藏日土县松西地区过铝质花岗岩的地球化学特征及构造背景[J].地质通报, 2006, 25(1/2):185.

    Google Scholar

    [54] 武鹏飞, 孙德有, 王天豪, 等.延边和龙地区闪长岩的年代学、地球化学特征及岩石成因研究[J].高校地质学报, 2013, 19(4):607.

    Google Scholar

    [55] Harris N B W, Lnger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110:46-56. doi: 10.1007/BF00310881

    CrossRef Google Scholar

    [56] Pearce J A, Harris N B W, Tindle A G. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. J. Petrol., 1984, 25(4):956-983 doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [57] Julian Pearce. Sources and settings of granitic rocks[J].Episodes, 1996. 19(4):120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    CrossRef Google Scholar

    [58] Liegeoiset J P. Some words on the post-collisional magmatism[J]. Lithos, 1998, 45:ⅩⅤ-ⅩⅤⅡ.

    Google Scholar

    [59] Zorpi M J, Coulon C, Orsini J B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids:A case study in northern Sardinia, Italy[J]. Chemical Geology, 1991, 92(1/3):45-86.

    Google Scholar

    [60] Sylvester L. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45:29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [61] 吴才来, 郜源红, 雷敏, 等.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因[J].岩石学报, 2014, 30(8):2297-2323.

    Google Scholar

    [62] Collins W J, Beams S D, White A J R, et al. Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J]. Contributions To Mineralogy and Petrology, 1982, 80(2):189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [63] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chem. Geol., 1985, (48):43-55. doi: 10.1016/0009-2541(85)90034-8

    CrossRef Google Scholar

    [64] Bowden P. Oversaturated alkaline rocks: granites pantellerites and comendites[C]//The alkaline rocks. New York: Wiley, 1974: 622.

    Google Scholar

    [65] 张旗, 冉眸, 李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014

    CrossRef Google Scholar

    [66] 侯增谦, 郑远川, 杨志明, 等.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质, 2012, (4):647-670. doi: 10.3969/j.issn.0258-7106.2012.04.002

    CrossRef Google Scholar

    [67] 许志琴, 杨经绥, 李海兵, 等.印度-亚洲碰撞大地构造[J].地质学报, 2011, 85(1):1-33.

    Google Scholar

    [68] Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia contact:paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121[J]. Geology, 1992, 20:395-398. doi: 10.1130/0091-7613(1992)020<0395:AEIACP>2.3.CO;2

    CrossRef Google Scholar

    [69] 李国彪.西藏南部古近纪微体古生物及盆地演化特征[D].中国地质大学(北京)博士学位论文, 2004: 171.http://med.wanfangdata.com.cn/Paper/Detail?id=DegreePaper_Y721277

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1232) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint