Citation: | ZHANG Yue, CHEN Junlu, SUN Jiming, TANG Zhuo, LI Ping, BAI Jianke. Geochemical characteristics and geological significance of basalt in the Armantai ophiolite, east Junggar, Xinjiang[J]. Geological Bulletin of China, 2019, 38(9): 1431-1442. |
The Armantai ophiolite belt is located in the east Junggar basin of Xinjiang. Metamorphic peridotite, cumulate rocks and basic volcanic rocks in the ophiolite belt are extensively developed. In spite of the fact that the sequence combination has been damaged by the structure, it on the whole remains a set of ophiolites with relatively complete assemblage. The rocks were deformed and experienced strong metamorphism, and have generally experienced chloritization and epidotization. The basic lava of Armantai ophiolite can be divided into three types, i.e., oceanic island basalt, oceanic ridge basalt and island arc basalt. Among them, oceanic island basalt did not belong to the ophiolite composition, it was involved in ophiolite belt at a later stage with other components into tectonic emplacement. The characteristics of major elements and trace elements of the basic lava show that the magma was derived from the depleted mantle and experienced metasomatism with the addition of the components of subduction zone. It is shown that its was related to the subduction. Combined with the tectonic setting and geochemical diagrams, the basic lava shows both IAT and MORB features and has the transitional characteristics. It can be inferred that the formation of the ophiolite was related to island arcs, and it probably occurred in partial oceanic trench region between oceanic ridge and oceanic trench.
[1] | 张旗, 周国庆.中国蛇绿岩[M].北京:科学出版社, 2001:1-200. |
[2] | Dewey J F, Bird J M. Origin and emplacement of the ophiolite suite:Appalachian ophiolitesin Newfoundland[J]. Journal of Geophysical Research, 1971, 76:3179-3206. doi: 10.1029/JB076i014p03179 |
[3] | Gass I G. Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor?[J]Nature, 1986, 220:39-42. |
[4] | Coleman R G. Plate tectonic emplacement of upper mantle peridotites along continental edges[J]. Journal of Geophysical Research, 1971, 76:1212-1222. doi: 10.1029/JB076i005p01212 |
[5] | Moores E M, Vine F J. The Troodos massif, Cyprus, and other ophiolites as oceanic crust:Evaluation and implications[J]. Philosophical Transactions of the Royal Society of London, 1971, 268A:443-466. |
[6] | Kidd R G W. A model for the process of formation of the upper oceanic crust[J]. Geophysical Journal of the Royal Astronmical Society, 1977, 50:149-183. doi: 10.1111/j.1365-246X.1977.tb01328.x |
[7] | Coleman R. Continental growth of Northwest China[J]. Tectonics, 1989, 8:621-635. doi: 10.1029/TC008i003p00621 |
[8] | Feng Y, Coleman R G, Tilton G, et al. Tectonic evolution of the west Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8:729-752. doi: 10.1029/TC008i004p00729 |
[9] | 李锦轶, 肖序常, 汤耀庆, 等.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J].地质论评, 1990, 36(4):305-316. doi: 10.3321/j.issn:0371-5736.1990.04.003 |
[10] | 李锦轶.新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩石学报, 1995, 11(增刊):73-84. |
[11] | 肖序常, 汤耀庆.古中亚复合巨型缝合带南缘构造演化[M].北京:科学出版社, 1991. |
[12] | 舒良树, 卢华复, 印栋浩, 等.新疆北部古生代大陆增生构造[J].新疆地质, 2001, 19(1):59-63. doi: 10.3969/j.issn.1000-8845.2001.01.011 |
[13] | Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the lateral growth of Central Asia[J]. J. Geol. Soc., London, 2004, 161:339-342. doi: 10.1144/0016-764903-165 |
[14] | Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China):Implications for the continental growth of central Asia[J]. Am. J. Sci., 2004, 304:370-395. doi: 10.2475/ajs.304.4.370 |
[15] | 刘伟, 张湘炳.乌伦古-斋桑泊构造杂岩带特征及其地质意义[C]//涂光炽.新疆北部固体地球科学新进展.北京: 科学出版社, 1993: 217-228. |
[16] | 黄萱, 金成伟, 孙宝山, 等.新疆阿尔曼太蛇绿岩时代的Nd、Sr同位素研究[J].岩石学报, 1997, 13(1):85-91. doi: 10.3321/j.issn:1000-0569.1997.01.007 |
[17] | Wang Z H, Sun S, Li J L, et al. Paleozoic tectonic evolution of the northern Xinjiang, China:Geochemical and geochronolgical constrains from the ophiolites[J]. Tectonics, 2003, 22(2):1014. |
[18] | 孙桂华, 李锦铁, 高立明, 等.新疆东部哈尔里克山闪长岩锆石SHRIMP U-Pb定年及其地质意义[J].地质论评, 2005, 51(4):463-469. doi: 10.3321/j.issn:0371-5736.2005.04.015 |
[19] | 何国琦, 李茂松, 刘德权, 等.中国新疆古生代地壳演化与成矿[M].乌鲁木齐:新疆人民出版社, 香港文化教育出版社, 1994. |
[20] | Pearce, J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publication, 1984, 16:77-94. doi: 10.1144/GSL.SP.1984.016.01.06 |
[21] | Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman, 1989:21-22. |
[22] | Melson W G, Vallier T L, Wright T L. Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean sea-floor spreading centers[C]//The geophysics of the Pacific Ocean Basin and its Margin. Washington D C. Am. Geophys. Union, 1976: 351-367. |
[23] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and process[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Spc. Publ. Geol. Soc. Lond., 1989, 42: 313-345. |
[24] | 夏林圻, 夏祖春, 徐学义, 等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志, 2007, 26(1):77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011 |
[25] | Elthon D. Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone[J]. Nature, 1991, 354:140-143. doi: 10.1038/354140a0 |
[26] | 周国庆.蛇绿岩的概念及其演变[C]//张旗.蛇绿岩与地球动力学研究[M].北京: 地质出版社, 1996: 15-20 |
[27] | Condie K C. High field strenches element ratios in Archean basalts:a window to evolving sources of mantle plumes?[J]. Lithos, 2005, 79:491-504. doi: 10.1016/j.lithos.2004.09.014 |
[28] | 贾大成, 胡瑞忠, 卢焱, 等.湘东北钠质煌斑岩地幔源区特征及成岩构造环境[J].中国科学(D辑), 2003, 33(4):344-352. |
Distribution map of Armantai ophiolite
The section of Armantai ophiolite(the X measured section of 17~59 strata)
The section of Armantai ophiolite (the XI measured section of 0~21 strata)
Photos and microphotographs of serpentinite(a, b) and basalt(c, d)
Nb/Y-SiO2 and SiO2-TFeO/MgO diagrams
Chondrite-normalized REE patterns and primitive mantle normalized trace element patterns
TiO2-MnO×10-P2O5×10 diagram
(Th/Nb)N-Nb/La(a)and Zr-Zr/Y(b)diagrams
Hf/3-Th-Ta (a) and Nb×2-Zr/4-Y (b) diagrams of basic lava
La-La/Nb (a) and Nb-Th/Nb (b) diagrams of basic lava
Zr/Nb-Nb/Th (a) and Nb/Y-Zr/Y (b) diagrams of basic lava