2019 Vol. 38, No. 5
Article Contents

BAI Chundong, WANG Jingui, LI Dian, ZHUAN SHAOpeng, CHEN Yuanyuan, ZHANG Xinzheng, ZHANG Zixuan. Zircon U-Pb age and geochemistry of Middle Triassic porphyritic granite in the north of Kudi, Xinjiang[J]. Geological Bulletin of China, 2019, 38(5): 802-809.
Citation: BAI Chundong, WANG Jingui, LI Dian, ZHUAN SHAOpeng, CHEN Yuanyuan, ZHANG Xinzheng, ZHANG Zixuan. Zircon U-Pb age and geochemistry of Middle Triassic porphyritic granite in the north of Kudi, Xinjiang[J]. Geological Bulletin of China, 2019, 38(5): 802-809.

Zircon U-Pb age and geochemistry of Middle Triassic porphyritic granite in the north of Kudi, Xinjiang

  • The West Kunlun Mountains is the product of the Tarim block and the Qiangtang plots in the Late Mesozoic collision orogeny. The closing time of the Kurdish-Aqiang rift valley is also controversial. In this paper, we studied the petrology, geochemistry and chronology of prophyritic monzonitic granite of the Kudi northern. In this paper, the LA-ICP-MS zircon U-Pb age is 244.42±0.87Ma, and the age is Middle Triassic. The SiO2 content of the porphyritic granite is 65.57%~67.70%, Mg#=35~38, A/CNK=.90~1.01, belonging to the aluminum-alkali high-potassium calc-alkaline rock. The total amount of rare earth elements is 193×10-6~339×10-6, δEu=0.72~0.78, with weak negative anomaly。Trace elements Rb, K, Th, U, La, Ce, Zr are enriched, Nb, Ti, P medium-strong loss. The porphyritic granite belongs to the I-type granite, and the source rock is the Andesite, which is formed in the subduction continental island arc environment. Regional data, previous achievements and research in this paper indicate that the porphyritic granite was formed in the continental arc environment of the Middle Triassic, and that the ancient Tethys oceanic crust subduction activity existed in the reservoir area of the Middle Triassic, Kulliag-A Rift Valley has not yet reduced closure.

  • 加载中
  • [1] 张传林, 于海锋, 王爱国, 等.西昆仑西段三叠纪两类花岗岩年龄测定及构造意义[J].地质学报, 2005, 79(5):645-652. doi: 10.3321/j.issn:0001-5717.2005.05.009

    CrossRef Google Scholar

    [2] 赵冬冬, 陈汉林, 杨树锋, 等.西昆仑甜水海地区前陆褶皱冲断带的构造样式及其演化[J].地质学报, 2000, 74(2):134-141. doi: 10.3321/j.issn:0001-5717.2000.02.005

    CrossRef Google Scholar

    [3] 康磊, 校培喜, 高晓峰, 等.西昆仑康西瓦断裂西段斜长片麻岩LA-ICP-MS锆石U-Pb定年及其构造意义[J].地质通报, 2012, 1(8):1244-1250. doi: 10.3969/j.issn.1671-2552.2012.08.004

    CrossRef Google Scholar

    [4] 刘金菊, 牛耀龄, 张宇, 等.西昆仑三十里营房-康西瓦花岗岩体的年代学、地球化学特征研究[C]//俯冲带壳幔相互作用论文集.中国地球科学联合学术年会, 2014: 1746.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201410040006.htm

    Google Scholar

    [5] 杨文强, 刘良, 曹玉亭, 等.西昆仑塔什库尔干印支期(高压)变质事件的确定及其构造地质意义[C]//中国科学: 地球科学, 2011, 41(8): 1047-1060.http://www.cnki.com.cn/Article/CJFDTotal-JDXK201108002.htm

    Google Scholar

    [6] 计文化, 周辉, 李亚民.西昆仑新藏公路118~323km段基性、酸性岩脉K-Ar年龄[J].地质通报, 2005, 24(3):243-245. doi: 10.3969/j.issn.1671-2552.2005.03.006

    CrossRef Google Scholar

    [7] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrylogy, 2001, 42(11):2033-2048. doi: 10.1093/petrology/42.11.2033

    CrossRef Google Scholar

    [8] Peccerillo A, Taylor S R. Geochemistry of Eocen calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. CMP, 1976, 58:63-81.

    Google Scholar

    [9] Boynton W V. Geochemistry of rate earth elements: Meteorite studies[C]//Henderson P. Rare Earth Elements Geochemistry. Amsterdam: Elsevier, 1984: 63-114.

    Google Scholar

    [10] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Ocean Basins. Geological Society, London: Geological Society of Special Publication, 1989, 42(1): 313-345.

    Google Scholar

    [11] Altherr R, Hegner E. High-potassium, calc-alkaline I-type Plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany)[J].Lithos, 2000, 50:51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    [12] 邓晋福, 罗照华, 苏尚国, 等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004.

    Google Scholar

    [13] Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG)series is not an analogue of Cenozonic adakite[J]. Earth and Planetary Science Letters, 2000, 182(1):115-125. doi: 10.1016/S0012-821X(00)00236-3

    CrossRef Google Scholar

    [14] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [15] Hofmann A W. Chemical differntitation of the Earth:The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90:297-314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    [16] Ayers J. Trace element modeling of aqueous fluid-peridotiti interaction in the mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 1998, 132(4):390-404. doi: 10.1007/s004100050431

    CrossRef Google Scholar

    [17] Ryerson F J, Watson E B. Rutile saturrtion in magma:Implications for Ti-Nb-Ta depletion in island-arc basalts[J]. Earth and Planetary Science Letters, 1987, 86(2/4):225-239.

    Google Scholar

    [18] 迟清华, 鄢明才.应用地球化学元素丰度数据手册[M].北京:地质出版社, 2007.

    Google Scholar

    [19] 肖庆辉, 王涛, 邓晋福, 等.中国典型造山带花岗岩与大陆地壳生长研究[M].北京:地质出版社, 2009.

    Google Scholar

    [20] Ringwood A E. Composition and petrology of the Earth's mantle[M]. McGraw-Hill.Inc., 1975.

    Google Scholar

    陕西省地质调查院.麻扎幅、神仙湾幅1:25万区域地质调查报告.2004.

    Google Scholar

    内蒙古第九地质矿产勘查开发院.新疆叶城县库地东一带1:5万区域地质调查报告.2014.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(548) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint