2019 Vol. 38, No. 5
Article Contents

CAI Hongming, LIU Guiping, NIJAT Abdurusul, YANG Weizhong, XING Ling. U-Pb age and geochemistry of zircons from the Katebasu Au deposit, West Tianshan Mountains, Xinjiang, and their geological implications[J]. Geological Bulletin of China, 2019, 38(5): 790-801.
Citation: CAI Hongming, LIU Guiping, NIJAT Abdurusul, YANG Weizhong, XING Ling. U-Pb age and geochemistry of zircons from the Katebasu Au deposit, West Tianshan Mountains, Xinjiang, and their geological implications[J]. Geological Bulletin of China, 2019, 38(5): 790-801.

U-Pb age and geochemistry of zircons from the Katebasu Au deposit, West Tianshan Mountains, Xinjiang, and their geological implications

  • The Katebasu Au deposit, located on the southern side of North Nalati fault, is a large-sized deposit with great prospecting potential. In order to study the genetic relationship between intrusions developed in the study area and the Au deposit, the authors separated zircons from two main types of ore, i.e., Au-bearing altered monzogranite and quartz-sulfide vein, for U-Pb isotopic concentrations and trace element content by using LA-MC-ICP-MS. The results show that the chondrite-normalized REE patterns of zircons are characterized by HREE enrichment relative to LREE, with evident positive Ce and negative Eu anomalies, typical of magmatic zircons. The logarithm of oxygen fugacity (Log(fo2)) calculated using δCe of the analyzed zircons is -29.2 to 5.1, suggesting high oxygen fugacity of magma, which is beneficial for preliminary enrichment of Au to provide metallogenic material. The highly variable oxygen fugacity might have suffered from significant contamination of the upper crust. Meanwhile, the application of the Ti-in-zircon thermometer exhibits high temperatures of 765~975℃ for zircons extracted from the Au-bearing altered monzogranite, indicative of dehydration melting of the lower crust. The zircons from Au-bearing quartz-sulfide vein have relatively lower crystallization temperatures of 641~823℃, suggesting crystallization of amphibole before zircon. The obtained zircon U-Pb ages of 350.4 ±1.6Ma for altered monzogranite and 348.9 ±1.4Ma for quartz-sulfide vein are interpreted as the magma crystallization age of the monzogranite, which is the main host rock of the deposit. The crystallization ages are earlier than previously reported metallogenic age, probably suggesting little relationship between the monzogranite formation and metallization of the Katebasu Au deposit.

  • 加载中
  • [1] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    [2] Hu F F, Fan H R, Yang J H, et al. Hydrothermal U-Pb zircon Shrimp dating ore-forming age of the lode gold-quartz-sulphide veins in Rushan, Jiaodong Peninsula[J]. Chinese Science Bulletin, 2004, 49(15):1629-1636. doi: 10.1007/BF03184134

    CrossRef Google Scholar

    [3] Kerrich R. Hydrothermal zircon and baddeleyite in Vald'Or Archean mesothermal gold deposits:Characteristics, compositions, and fluid-inclusion properties, with implications for timing of primary gold mineralization[J]. Canadia Journal of Earth Sciences, 1993, 30(2):2334-2351.

    Google Scholar

    [4] Li H, Watanabe K, Yonezu K. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China:Implications for the magmatic evolution and mineralization processes[J]. Ore Geology Reviews, 2014, 60(3):14-35.

    Google Scholar

    [5] Belousova E, Griffin W, O'reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [6] Wang Q, Zhu D C, Zhao Z D, et al. Magmatic zircons from I-, Sand A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53(2):59-66.

    Google Scholar

    [7] Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1/2):123-138.

    Google Scholar

    [8] Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7):643-646. doi: 10.1130/G23603A.1

    CrossRef Google Scholar

    [9] Nardi L V S, Formoso M L L, Jarvis K, et al. REE, Y, Nb, U, and Th contents and tetrad effect in zircon from a magmatichydrothermal F-rich system of Sn-rare metal-cryolite mineralized granites from the Pitinga Mine, Amazonia, Brazil[J]. Journal of South American Earth Sciences, 2012, 33(1):34-42. doi: 10.1016/j.jsames.2011.07.004

    CrossRef Google Scholar

    [10] Trail D, Watson E B, Tailby N D. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 2012, 97:70-87. doi: 10.1016/j.gca.2012.08.032

    CrossRef Google Scholar

    [11] Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3):637-648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    [12] Kong D X, Xu J F, Chen J L. Oxygen isotope and trace element geochemistry of zircons from porphyry copper system:Implications for Late Triassic metallogenesis within the Yidun Terrane, southeastern Tibetan Plateau[J]. Chemical Geology, 2016, 441:148-161. doi: 10.1016/j.chemgeo.2016.08.012

    CrossRef Google Scholar

    [13] 薛春纪, 赵晓波, 莫宣学, 等.西天山"亚洲金腰带"及其动力背景和成矿控制及找矿[J].地学前缘, 2014, 21(5):128-155.

    Google Scholar

    [14] 冯博, 薛春纪, 赵晓波, 等.西天山卡特巴阿苏大型金铜矿赋矿二长花岗岩岩石学、元素组成和时代[J].地学前缘, 2014, 21(5):187-195.

    Google Scholar

    [15] 张祺, 薛春纪, 赵晓波, 等.新疆西天山卡特巴阿苏大型金矿床地质地球化学和成岩成矿年代[J].中国地质, 2015, 42(3):411-437. doi: 10.3969/j.issn.1000-3657.2015.03.003

    CrossRef Google Scholar

    [16] 杜亚龙, 李智明, 王继斌, 等.新疆西天山卡特巴阿苏金矿黄铁矿地球化学特征及地质意义[J].西北地质, 2017, 50(1):239-248. doi: 10.3969/j.issn.1009-6248.2017.01.020

    CrossRef Google Scholar

    [17] 杨维忠, 薛春纪, 赵晓波, 等.新疆西天山新发现新源县卡特巴阿苏大型金铜矿床[J].地质通报, 2013, 32(10):1613-1620. doi: 10.3969/j.issn.1671-2552.2013.10.013

    CrossRef Google Scholar

    [18] 邢令, 杨维忠, 藏梅, 等.新疆卡特巴阿苏金铜矿区二长花岗岩锆石SHRIMP U-Pb年龄及地质意义[J].新疆地质, 2015, 33(1):1-6. doi: 10.3969/j.issn.1000-8845.2015.01.002

    CrossRef Google Scholar

    [19] 刘云华, 李真, 莫宣学, 等.西天山卡特巴阿苏矽卡岩型-破碎带蚀变岩型金铜矿床地质特征[J].吉林大学学报(地球科学版), 2016, 46(5):1368-1382.

    Google Scholar

    [20] Dong L L, Wan B, Yang W Z, et al. Rb-Sr geochronology of single gold-bearing pyrite grains from the Katbasu gold deposit in the South Tianshan, China and its geological significance[J]. Ore Geology Reviews, 2018, 100:99-110. doi: 10.1016/j.oregeorev.2016.10.030

    CrossRef Google Scholar

    [21] 韩继全, 杨维忠, 林泽华, 等.新疆卡特巴阿苏金矿床含矿岩石及围岩地球化学特征与构造环境简析[J].新疆地质, 2016, 34(4):496-503. doi: 10.3969/j.issn.1000-8845.2016.04.010

    CrossRef Google Scholar

    [22] 高俊, 钱青, 龙灵利, 等.西天山的增生造山过程[J].地质通报, 2009, 28(12):1804-1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

    CrossRef Google Scholar

    [23] 邢令, 藏梅, 杨维忠, 等.新疆卡特巴阿苏金铜矿床全岩矿化小岩体的发现及地质意义[J].新疆地质, 2016, 34(2):1-7.

    Google Scholar

    [24] 高永伟, 张振亮, 王志华, 等.西天山卡特巴阿苏金矿床成矿年代学及其地质意义——来自绢云母40Ar-39Ar同位素年龄证据[J].地质与勘探, 2015, 51(5):805-815.

    Google Scholar

    [25] 邢令, 薛春纪, 藏梅, 等.西天山卡特巴阿苏金铜矿区成矿元素分布及其勘查意义[J].矿床地质, 2018, 37(1):105-115.

    Google Scholar

    [26] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [27] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [28] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the TransNorth China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    Google Scholar

    [29] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 1(15):1535-1546.

    Google Scholar

    [30] Ludwig K R. ISOPLOT/Ex, version3:A geochronological toolkit for microsoft excel[M]. Berkeley:Berkeley Geochronology Center, California, 2003.

    Google Scholar

    [31] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.

    Google Scholar

    [32] El-Bialy Z M, Ali K A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600-614Ma) postcollisional Dokhan volcanics and younger granites of SE Sinai, NE Arabian-Nubian Shield[J]. Chemical Geology, 2013, 360/361(1):54-73.

    Google Scholar

    [33] Whitehouse M J, Kamber B S. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation[J]. Earth and Planetary Science Letters, 2002, 204(3/4):333-346.

    Google Scholar

    [34] 周金胜, 孟祥金, 藏文栓, 等.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义[J].岩石学报, 2013, 29(11):3755-3766.

    Google Scholar

    [35] Pettke T, Audétat A, Schaltegger U, et al. Magmatic to hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia):Part Ⅱ:Evolving zircon and thorite trace element chemistry[J]. Chemical Geology, 2005, 220(3/4):191-213.

    Google Scholar

    [36] Lawrie K C, Mernagh T P, Ryan C G, et al. Chemical fingerprinting of hydrothermal zircons:an example from the Gidginbung high sulphidation Au-Ag-(Cu) deposit, New South Wales, Australia[J]. Proceedings of the Geologists' Association, 2007, 118(1):37-46. doi: 10.1016/S0016-7878(07)80045-9

    CrossRef Google Scholar

    [37] Valley P M, Hanchar J M, Whitehouse M J. Direct dating of Fe oxide-(Cu-Au) mineralization by U/Pb zircon geochronology[J]. Geology, 2009, 37(3):223-226. doi: 10.1130/G25439A.1

    CrossRef Google Scholar

    [38] Fu B, Mernagh T P, Kita N T, et al. Distinguishing magmatic zircon from hydrothermal zircon:A case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit, SE Australia[J]. Chemical Geology, 2009, 259(3/4):131-142.

    Google Scholar

    [39] Yang W B, Niu H C, Shan Q, et al. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite:implications for Zr-REE-Nb mineralization[J]. Mineralium Deposita, 2014, 49(4):451-470. doi: 10.1007/s00126-013-0504-1

    CrossRef Google Scholar

    [40] 赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J].地学前缘, 2010, 17(1):267-286.

    Google Scholar

    [41] Shen P, Hattori K, Pan H, et al. Oxidation condition and metal fertility of granitic magmas:Zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt[J]. Economic Geology, 2015, 110(7):1861-1878. doi: 10.2113/econgeo.110.7.1861

    CrossRef Google Scholar

    [42] 辛洪波, 曲晓明.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束[J].矿物学报, 2008, 28(2):152-160. doi: 10.3321/j.issn:1000-4734.2008.02.007

    CrossRef Google Scholar

    [43] Sun W D, Arculus R J, Kamenetsky V S, et al. Release of goldbearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. Nature, 2004, 431(7011):975-978. doi: 10.1038/nature02972

    CrossRef Google Scholar

    [44] Carroll M R, Rutherford M J. Sulfur speciation in hydrous experimental glasses of varying oxidation state; results from measured wavelength shifts of sulfur X-rays[J]. American Mineralogist, 1988, 73(7/8):845-849.

    Google Scholar

    [45] 芮宗瑶, 张洪涛, 陈仁义, 等.斑岩铜矿研究中若干问题探讨[J].矿床地质, 2006, 25(4):491-500 doi: 10.3969/j.issn.0258-7106.2006.04.014

    CrossRef Google Scholar

    [46] Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151(4):413. doi: 10.1007/s00410-006-0068-5

    CrossRef Google Scholar

    [47] Baldwin J A, Brown M, Schmitz M D. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism[J]. Geology, 2007, 35(4):295-298. doi: 10.1130/G23285A.1

    CrossRef Google Scholar

    [48] Carley T L, Miller C F, Wooden J L, et al. Iceland is not a magmatic analog for the Hadean:Evidence from the zircon record[J]. Earth and Planetary Science Letters, 2014, 405(1/2):85-97.

    Google Scholar

    [49] Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in plutonic rocks[J]. Geology, 2007, 35(7):635. doi: 10.1130/G23505A.1

    CrossRef Google Scholar

    [50] Fu B, Page F Z, Cavosie A J, et al. Ti-in-zircon thermometry:applications and limitations[J]. Contributions to Mineralogy and Petrology, 2008, 156(2):197-215. doi: 10.1007/s00410-008-0281-5

    CrossRef Google Scholar

    [51] Xie J C, Fang D, Yan J, et al. Petrogenesis of Mesozoic dioritic rocks and Cu-Au mineralization in Tongling region:In-situ zircon geochemical constraints[J]. Acta Geologica Sinica, 2014, 88(s2):51-53. doi: 10.1111/1755-6724.12367_25

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(678) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint