2020 Vol. 39, No. 9
Article Contents

CHENG Xianyu, TENG Xuejian, TIAN Jian, DUAN Xiaolong. Geochemical characteristics, isotopic ages and tectonic environment of Sangejing Formation in Beishan orogenic belt, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1461-1473.
Citation: CHENG Xianyu, TENG Xuejian, TIAN Jian, DUAN Xiaolong. Geochemical characteristics, isotopic ages and tectonic environment of Sangejing Formation in Beishan orogenic belt, Inner Mongolia[J]. Geological Bulletin of China, 2020, 39(9): 1461-1473.

Geochemical characteristics, isotopic ages and tectonic environment of Sangejing Formation in Beishan orogenic belt, Inner Mongolia

More Information
  • A set of island arc basalts is exposed in Sangejing Formation in the south of Baiyunshan ophiolite belt in the middle part of Beishan orogenic belt.It is mainly composed of pillow basalt and porous almond basalt, conformable contact with tuffaceous clastic rocks, thin-layered clayey siliceous rocks and thick-layered carbonate rocks.The weighted average age of basalts in Sangejing Formation is 396.6±3.3 Ma, suggesting Early Devonian.A study of the rock geochemistry shows that the major elements characteristics of the basalts of the Sangejing Formation indicate that the main body of the basalts belongs to the subalkaline tholeiite series.The main part of the normalized distribution curve of chondrite-normalized REE patterns of the basalts exhibit the right-oblique type of enrichment of LREE, with ∑REE being 35.88×10-6~129.41×10-6, LREE/HREE being 1.62~3.84, and (La/Yb)N being 1.02~3.42.The bimodal magmatic assemblage consists of Sangejing basalts, and S-type and A-type granites are developed extensively in this region.It is inferred that the Sangejing Formation occurred after an orogenic extensional tectonic environment.Based on previous data and regional comparison, it is inferred that the Beishan Ocean in Beishan area was closed before the Early Devonian.A study of Lu-Hf Isotope of zircon indicates that the Sangejing basalt has the data εHf(t)=(+4.67~+8.02), tDM1=692~826 Ma and Dy/Yb=1.77~2.13, and that the Sangejing basalts were formed by partial melting of the depleted spinel-facies mantle peridotite to garnet-facies mantle peridotite in the Neoproterozoic mantle source area.

  • 加载中
  • [1] Sengör A M C, Natal'in B A, Burtman V S.Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J].Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [2] Jahn B M, Wu F Y, Chen B.Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J].Transactions of the Royal Society of Edinburgh, Earth Sciences, 2000, 91:181-193. doi: 10.1017/S0263593300007367

    CrossRef Google Scholar

    [3] Windley B F, Alexeiev D, Xiao W J, et al.Tectonic models for accretion of the Central Asian Orogenic Belt[J].Journal of the Geological Society, London, 2007, 164:31-47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [4] Kovalenko V I, Yarmolyuk V V, Kovach V P, et al.Isotopic provinces, mechanism of generation and sources of the continental curst in the Central Asian mobile belt:geological and isotopic evidence[J].Journal of Asian Earth Sciences, 2004, 23:605-627. doi: 10.1016/S1367-9120(03)00130-5

    CrossRef Google Scholar

    [5] Xiao W J, Han C M, Yuan C, et al.Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China:implications for the tectonic evolution of Central Asia[J].Journal of Asian Earth Sciences, 2008, 32:102-117. doi: 10.1016/j.jseaes.2007.10.008

    CrossRef Google Scholar

    [6] Xiao W J, Windley B F, Yuan C, et al.Paleozoic multiple subduction-accretion processes of the southern Altaids[J].American Journal of Science, 2009, 309; 221-270. doi: 10.2475/03.2009.02

    CrossRef Google Scholar

    [7] Cawood P A, Kröner A, Collins W J, et al.Earth accretionary orogens through Earth history[C]//Cawood P A, Kröner A.Earth accretionary systems in space and time.Geological Society of London, Special Publications, 2009, 318: 1-36.https://www.onacademic.com/detail/journal_1000035566457210_4abf.html

    Google Scholar

    [8] Jahn B M.The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[C]//Malpas J, Fletcher C J N, Ali J R, et al, Aspects of the tectonic evolution of China.Geological Society, London, 2004: 3-100.https://www.researchgate.net/publication/249551250_The_Central_Asian_Orogenic_Belt_and_growth_of_the_continental_crust_in_the_Phanerozoic

    Google Scholar

    [9] Xiao W, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].American Journal of Science, 2010, 310:1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [10] Song D F, Xiao W J, Han C M, et al.Progressive accretionary tectonics of the Beishan orogenic collage, Southern Altaids:insights from zircon U-Pb and Hf isotopic data of high-grade complexes[J].Precambrian Research, 2013, 227:368-388. doi: 10.1016/j.precamres.2012.06.011

    CrossRef Google Scholar

    [11] Wang S D, Zhang K X, Song B W, et al.Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China:implications for tectonic evolution of the Beishan Orogenic collage[J].Original Paper, 2017, 6:1-21.

    Google Scholar

    [12] Ding J X, Han C M, Xiao W J, et al.Geochronology, geochemistry and Sr-Nd isotopes of the granitic rocks associated with tungsten deposits in Beishan district, NW China, Central Asian Orogenic Belt:Petrogenesis, metallogenic and tectonic implications[J].Ore Geology Reviews, 2017, 89:441-462. doi: 10.1016/j.oregeorev.2017.06.018

    CrossRef Google Scholar

    [13] 胡新茁, 赵国春, 胡新悦, 等.内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J].地质通报, 2015, 34(2/3):425-436.

    Google Scholar

    [14] 左国朝, 何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990:1-226.

    Google Scholar

    [15] 龚全胜, 刘明强, 梁明宏, 等.北山造山带大地构造相及构造演化[J].西北地质, 2003, 36(1):11-17.

    Google Scholar

    [16] 龚全胜, 刘明强, 李海林, 等.甘肃北山造山带类型及基本特征[J].西北地质, 2002, 35(3):28-34.

    Google Scholar

    [17] 于福元, 李金宝, 王涛.东天山红柳河地区蛇绿岩U-Pb同位素年龄[J].地球学报, 2006, 27(3):213-216.

    Google Scholar

    [18] 张元元, 郭召杰.甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J].岩石学报, 2008, 24(4):804-809.

    Google Scholar

    [19] Wu T R, Zheng R G, Zhang W, et al.Tectonic framework of Beishan MountainNorthern Alxa Area and the time constraints for the closing of the Paleo-Asian Ocean[J].Proceedings of the Fifth Workshop on 1:5000000 International Geological Map of Asia, 2011:95-98.

    Google Scholar

    [20] 侯青叶, 王忠, 刘经宝, 等.北山月牙山蛇绿岩地球化学特征及SHRIMP定年[J].现代地质, 2012, 26(5):1008-1018.

    Google Scholar

    [21] 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031.

    Google Scholar

    [22] Tian Z H, Xiao W J, Windley B F, et al.Structure, age, and tectonic development of the Huoshishan-Niujuanzi ophiolitic mélange, Beishan, southernmost Altaids[J].Gondwana Research, 2014, 25:820-841. doi: 10.1016/j.gr.2013.05.006

    CrossRef Google Scholar

    [23] 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694.

    Google Scholar

    [24] 孙立新, 张家辉, 任邦方, 等.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志, 2017, 36(2):131-147.

    Google Scholar

    [25] Ao S J, Xiao W J, Han C M, et al.Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China:implications for the architecture of the Southern Altaids[J].Geological Magazine, 2012, 149(4):606-625. doi: 10.1017/S0016756811000884

    CrossRef Google Scholar

    [26] Guo Q Q, Xiao W J, Hou Q L, et al.Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt[J].Lithos, 2014, 184:361-378.

    Google Scholar

    [27] Guo Q Q, Chung S L, Xiao W J, et al.Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China:Geochemical and Nd-Sr-Hf isotopic constraints[J].Lithos, 2017, 84-96.

    Google Scholar

    [28] Zhu J, Lv X B, Peng S G.U-Pb zircon geochronology, geochemistry and tectonic implications of the early Devonian granitoids in the Liuyuan area, Beishan, NW China[J].Geosciences Journal, 2016, 20(5):609-625. doi: 10.1007/s12303-016-0004-2

    CrossRef Google Scholar

    [29] Wang X Y, Yuan C, Zhang Y Y, et al.S-type granite from the Gongpoquan arc in the Beishan Orogenic collage, southern Altaids:Implications for the tectonic transition[J].Journal of Asian Earth Sciences, 2018, 153:206-222. doi: 10.1016/j.jseaes.2017.07.037

    CrossRef Google Scholar

    [30] 郑荣国, 吴泰然, 张文, 等.甘肃北山中带早泥盆世的构造-岩浆作用:来自公婆泉花岗岩体年代学和地球化学证据[J].北京大学学报(自然科学版), 2012, 48(4):603-616.

    Google Scholar

    [31] 李向民, 余吉远, 王国强, 等.甘肃北山红柳园地区泥盆系三个井组和墩墩山群LA-ICP-MS锆石U-Pb测年及其意义[J].地质通报, 2011, 30(10):1501-1507.

    Google Scholar

    [32] Chen F K, Hegner E, Todt W.Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc[J].Internatianal Journal of Earth Sciences, 2000, 88:791-802. doi: 10.1007/s005310050306

    CrossRef Google Scholar

    [33] Chen F K, Siebel W, Satir M, et al.Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J].International Journal of Earth Sciences, 2002, 91:469-481. doi: 10.1007/s00531-001-0239-6

    CrossRef Google Scholar

    [34] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51(1/2):537-571.

    Google Scholar

    [35] Ludwig K R.Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[J].Berkeley Geochronology Center, California, Berkeley, 2003, 1-39.

    Google Scholar

    [36] Wu F Y, Yang Y H, Xie L W, et al.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J].Chemical Geology, 2006.234(1/2):105-126.

    Google Scholar

    [37] Sderlund U, Patchett P J, Vervoort J D, et al.The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J].Earth and Planetary Science Letters, 2004.219(3/4):311-324.

    Google Scholar

    [38] Bouvier A, Vervoort J D, Patchett P J.The Lu-Hf and Sm-Nd isotopic composition of CHUR:Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J].Earth and Planetary Science Letters, 2008, 273(1/2):48-57.

    Google Scholar

    [39] Griffin W L, Pearson N J, Belousova E, et al.The Hf-isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochimica et Cosmochimica Acta, 2000, 64(1):133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [40] Griffin W L, Belousova E A, Shee S R, et al.Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J].Precambrian Research, 2004, 131(3/4):231-282.

    Google Scholar

    [41] Wilson M.Igneous Petrogenesis:A global tectonic approach[M].London:Chapman and Hall, 1989.

    Google Scholar

    [42] Rapp R P.Heterogeneous source regions for Archean granitoids[C]//Wit M J, Ashwal L D.Green Stone Belts.Oxford: Oxford University Press, 1997: 35-37.

    Google Scholar

    [43] Eric A K.Middlemost.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews 1994, 37:215-224. doi: 10.1016/0012-8252(94)90029-9

    CrossRef Google Scholar

    [44] Winchester J A, Floyd P A.Geochemical discrimination of different magmas series and their differentiation products using immobile elements[J].Chemical Geology, 1997, 20:325-343.

    Google Scholar

    [45] Irvine T N, Baragar W R A.A guide to the chemical classification of the common volcanic rocks[J].Can.J.Earth Sci., 1971, 8:523-548. doi: 10.1139/e71-055

    CrossRef Google Scholar

    [46] Boynton W V.Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P.Rare earth element geochemistry.Amsterdam: Elsevier, 1984: 63-114.https://www.researchgate.net/publication/308632289_Geochemistry_of_the_rare_earth_elements_Meteorite_studiesA

    Google Scholar

    [47] Sun S S, McDonough WF.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989:313-345.

    Google Scholar

    [48] 杨杰, 裴先治, 李瑞保, 等.东昆仑南缘布青山地区哈尔郭勒玄武岩地球化学特征及其地质意义[J].中国地质, 2014, 41(2):335-349.

    Google Scholar

    [49] Belousova E W, Griffinsuzanne Y, O'Reilly, et al.Igneous zircon:trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [50] Hoskin P W O.Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology, 2000, 18(4):423-439. doi: 10.1046/j.1525-1314.2000.00266.x

    CrossRef Google Scholar

    [51] 王立武, 王颖, 杨静, 等.用碎屑锆石SHRIMP年代学方法恢复松辽盆地南部前中生代基底的源区特征[J].地学前缘, 2007, 14(4):151-158.

    Google Scholar

    [52] 李文国, 李庆富, 姜万德, 等.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996.

    Google Scholar

    [53] 梁积伟, 陈玉良, 张文卿, 等.甘肃北山地区泥盆系三个井组碎屑锆石年龄及其地质意义[J].地质科技情报, 2014, 33(3):1-9.

    Google Scholar

    [54] 王立武, 王颖, 杨静, 等.用碎屑锆石SHRIMP年代学方法恢复松辽盆地南部前中生代基底的源区特征[J].地学前缘, 2007, 14(4):151-158.

    Google Scholar

    [55] 孙书勤, 张成江, 赵松江.大陆板内构造环境的微量元素判别[J].大地构造与成矿, 2007, 2:104-109.

    Google Scholar

    [56] Müller D, Rock N M S, Groves D I.Geochemical discrimination between shoshonotic and potassic volcanic rocks from different tectonic settings:A pilot study[J].Mineral Petrol., 1992, 46(2):359-289.

    Google Scholar

    [57] Harrison T M, Blichert-Toft J, Muller W, et al.Heterogeneous Hadean hafnium:Evidence of continental crust at 4.4 to 4.5Ga[J].Science, 2005, 310(5756):1947-1950.

    Google Scholar

    [58] Wendlandt R F, Altherr R, Neumann E R, et al.Petrology, geochemistry, isotopes[C]//Olsen K H.Continental rifts: Evolution, strcture, tectonics.Amsterdam: Elsevier, 1995: 47-60.

    Google Scholar

    [59] Deniel C.Geochemical and isotopic(Sr-Nd-Pb)evidence for plume-lithosphere interactions in the genesis of Grande Comoremagamas(Indian Ocean)[J].Chem.Geol., 1998, 144:281-303. doi: 10.1016/S0009-2541(97)00139-3

    CrossRef Google Scholar

    [60] Miller C, Schuster R, Klötzli U, et al.Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J].Journal of Petrology, 1990, 40:1399-1424.

    Google Scholar

    [61] He Z Y, Zhang Z M, Zong K Q, et al.Zircon U-Pb and Hf isotopic studies of the Xingxingxia Complex from Eastern Tianshan(NW China):Significance to the reconstruction and tectonics of the southern Central Asian Orogenic Belt[J].Lithos, 2014, 190:485-499.

    Google Scholar

    [62] Huang B T, He Z Y, Zhang Z M, et al.Early Neoproterozoic granitic gneisses in the Chinese Eastern Tianshan:Petrogenesis and tectonic implications[J].Journal of Asian Earth Science, 2014, 21(8):1-14.

    Google Scholar

    [63] 叶晓峰, 宗克清, 张泽明, 等.北山造山带南缘柳园地区新元古代花岗岩的地球化学特征及其地质意义[J].地质通报, 2013, 32:307-317.

    Google Scholar

    [64] 姜洪颖, 贺振宇, 宗克清, 等.北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究[J].岩石学报, 2013, 29:3949-3967.

    Google Scholar

    [65] He Z Y, Zhang Z M, Zong K Q, et al.Paleoproterozoic crustal evolution of the Tarim Craton:Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang[J].J.Asian Earth Sci., 2013, 78:54-70. doi: 10.1016/j.jseaes.2013.07.022

    CrossRef Google Scholar

    [66] Zong K, Liu Y, Zhang Z, et al.The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China[J].Precambrian Res., 2013, 235:251-263. doi: 10.1016/j.precamres.2013.07.002

    CrossRef Google Scholar

    [67] Huang B T, He Z Y, Zong K Q, et al.Zircon U-Pb and Hf isotopic study of Neoproterozoic granitic gneisses from the Alatage area:Constraints on the Precambrian crustal evolution in the Chinese Central Tianshan Block[J].Chin.Sci.Bull., 2014, 59:100-112. doi: 10.1007/s11434-013-0010-y

    CrossRef Google Scholar

    [68] Zhang J X, Yu S Y, Gong J H, et al.The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim Craton, northwestern China:Evidence from zircon U-Pb dating and Hf isotopic analyses[J].Precambrian Res., 2013, 226:21-42. doi: 10.1016/j.precamres.2012.11.014

    CrossRef Google Scholar

    [69] 王树庆, 胡晓佳, 赵华雷.内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J].地质调查与研究, 2019, 42(2):81-85.

    Google Scholar

    [70] 王智, 王惠初, 施建荣.内蒙古集宁地区徐武家变质辉长岩的形成背景及其地质意义[J].地质调查与研究, 2020, 42(2):97-113.

    Google Scholar

    田健, 段霄龙.内蒙古1: 5万月牙山K47E015010、儿驼山K47E016010幅区域地质矿产调查报告.2018.

    Google Scholar

    地质部甘肃省地质局第二区域地质测量队.石板井幅1: 20万区域矿产调查报告.1972.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views(570) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint