2020 Vol. 39, No. 9
Article Contents

DONG Peipei, LI Yingjie, WANG Jinfang, LI Hongyang. The Early Permian adakite in the Meilaotewula ophiolite of Inner Mongolia and intra-oceanic subduction in eastern Palaeo-Asian Ocean[J]. Geological Bulletin of China, 2020, 39(9): 1474-1487.
Citation: DONG Peipei, LI Yingjie, WANG Jinfang, LI Hongyang. The Early Permian adakite in the Meilaotewula ophiolite of Inner Mongolia and intra-oceanic subduction in eastern Palaeo-Asian Ocean[J]. Geological Bulletin of China, 2020, 39(9): 1474-1487.

The Early Permian adakite in the Meilaotewula ophiolite of Inner Mongolia and intra-oceanic subduction in eastern Palaeo-Asian Ocean

More Information
  • This paper reports the Early Permian adakite in the Meilaotewula SSZ-type ophiolite, Inner Mongolia.The Meilaotewula adakitic rocks are mainly composed of andesite and dacite, which were emplaced into the Late Carboniferous Meilaotewula suprasubduction zone(SSZ)ophiolite and were developed along the Hegenshan suture zone.The zircon U-Pb LA-ICP-MS dating result reveals that the Meilaotewula adakite is dated at 294.1±2.2 Ma, suggesting that it was formed during Early Permian.The adakite belongs to the low-K tholeiitic and medium-K calc-alkaline series.The rocks show such geochemical characteristics as high SiO2(64.12%~69.12%)and Al2O3(16.05%~18.59%)content with rich sodium and poor potassium(Na2O=5.08%~6.80%, K2O=0.70%~1.22%, Na2O/K2O=4.50~7.26).For trace elements, they show high content of Sr(291.22×10-6~762.20×10-6)and low content of Yb(0.74×10-6~1.28×10-6)and Y(7.33×10-6~12.74×10-6).In addition, they are relatively enriched in large-ion lithophile elements such as K, Rb, and Sr and depleted in high-field-strength elements such as Nb, Ta, Zr, Ti and P. Furthermore, they have low total rare-earth element(REE)content(40.97×10-6~108.69×10-6), with low heavy rare-earth elements(HREE)without obviously negative Eu anomaly.These geochemical characteristics indicate that the Meilaotewula andesite and dacite belong to adakite.The adakite was formed in the island arc environment of subduction zone, which might have originated from partial melting of subducted oceanic crust and then interacted with mantle wedge peridotite during the rise of subduction zone.The adakite and the Meilaotewula ophiolite(308 Ma)made up one abundant and complete rock assemblage, which was formed by the initial intraoceanic subduction.Therefore, Meilaotewula ophiolite consists of serpentined augite peridotite, beded-massive gabbro, pillow basalt, boninite, Nb-enriched basalt and high-Mg andesite.The results show that the initial intraoceanic subduction occurred in Late Carboniferous to Early Permian in southeastern Palaeo-Asian Ocean.

  • 加载中
  • [1] Ruzhentsev S V, Mossakovskiy A A.Geodynamics and tectonic evolution of the central Asian paleozoic structures as the result of the interaction between the pacific and Indo-Atlantic segments of the Earth[J].Geotectonics, 1996, 29(4):294-311

    Google Scholar

    [2] 李英杰, 王金芳, 李红阳, 等.内蒙古西乌珠穆沁旗迪彦庙蛇绿岩的识别[J].岩石学报, 2012, 28(4):1282-1290.

    Google Scholar

    [3] 李英杰, 王金芳, 李红阳, 等.内蒙西乌旗白音布拉格蛇绿岩地球化学特征[J].岩石学报, 2013, 29(8):2719-2730.

    Google Scholar

    [4] 李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J].岩石学报, 2015, 31(5):1461-1470.

    Google Scholar

    [5] 李英杰, 王金芳, 王根厚, 等.内蒙古迪彦庙蛇绿岩带达哈特前弧玄武岩的发现及其地质意义[J].岩石学报, 2018, 24(2):2719-2730.

    Google Scholar

    [6] Kovalenko V I, Yarmolyuk V V, Kovach V P, et al.Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:Geological and isotopic evidence[J].Journal of Asian Earth Sciences, 2004, 23(5):605-627. doi: 10.1016/S1367-9120(03)00130-5

    CrossRef Google Scholar

    [7] Xiao W J, Windley B F, Huang B C, et al.End-Permian to mid-Triassic ermination of the accretionary processes of the southern Altaids:Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J].Int.J.Earth Sci.Geol.Rundsch, 2009, 98:1189-1217. doi: 10.1007/s00531-008-0407-z

    CrossRef Google Scholar

    [8] Li Y J, Wang G H, Santosh M, et al.Subduction initiation of the SE Paleo-Asian Ocean:Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia[J].Earth and Planetary Science Letters, 2020.535:116087. doi: 10.1016/j.epsl.2020.116087

    CrossRef Google Scholar

    [9] Li Y J, Wang J F, Xin H T, et al.Subduction initiation in the southeastern Palaeo-Asian Ocean:Constraints from early Permian adakites in suprasubduction zone ophiolites, central Inner Mongolia, North China[J].Geological Journal, 2020, 55:2044-2061. doi: 10.1002/gj.3696

    CrossRef Google Scholar

    [10] 王荃, 刘雪亚, 李锦轶.中国华夏与安加拉古陆间的板块构造[M].北京:北京大学出版社, 1991:151.

    Google Scholar

    [11] 唐克东.中朝板块北侧褶皱带构造演化及成矿规律[M].北京:北京大学出版社, 1992:305.

    Google Scholar

    [12] Li J Y.Permian geodynamic setting of Northeast China and adjacent regions:Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate[J].Journal of Asian Earth Sciences, 2006, 26(3/4):207-224.

    Google Scholar

    [13] 张晋瑞, 魏春景, 初航.兴蒙造山带构造演化的新模式:来自内蒙古中部四期不同类型变质作用的证据[J].岩石学报, 2018, 34(10):2857-2872.

    Google Scholar

    [14] Chen B, Jahn B M, Wilde S A, et al.Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:Petrogenesis and tectonic implications[J].Tectonophysics, 2000, 328(1/2):157-182.

    Google Scholar

    [15] Miao L C, Fan W M, Liu D Y, et al.Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J].Journal of Asian Earth Science, 2008, 32(5/6):348-370.

    Google Scholar

    [16] 邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社, 1991:1-135.

    Google Scholar

    [17] 邵济安, 唐克东, 何国琦.内蒙古早二叠世构造古地理的再造[J].岩石学报, 2014, 30(7):1858-1866.

    Google Scholar

    [18] Tang K D.Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean craton[J].Tectonics, 1990, 9(2):249-260.

    Google Scholar

    [19] Tong Y, Jahn B M, Wang T, et al.Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China:Model of generation, time of emplacement and regional tectonic significance[J].Journal of Asian Earth Science, 2015, 97:320-336. doi: 10.1016/j.jseaes.2014.10.011

    CrossRef Google Scholar

    [20] 包志伟, 陈森煌, 张桢堂.内蒙古贺根山地区蛇绿岩稀土元素和Sr-Nd同位素研究[J].地球化学, 1994, 23(4):339-349.

    Google Scholar

    [21] Liu J F, Li J Y, Chi X G, et al.A late Carboniferous to early early Permian subduction-accretion complex in Daqing pasture, southeastern Inner Mongolia:Evidence of northward subduction beneath the Siberian paleoplate southern margin[J].Lithos, 2013, 177:285-296. doi: 10.1016/j.lithos.2013.07.008

    CrossRef Google Scholar

    [22] Nozaka T, Liu Y.Petrology of the Hegenshan ophiolite and its implications for the tectonic evolution of northern China[J].Earth and Planetary Science Letters, 2002, 202:89-104. doi: 10.1016/S0012-821X(02)00774-4

    CrossRef Google Scholar

    [23] Robinson P T, 白文吉, 杨经绥, 等.内蒙古贺根山蛇绿岩岩石成因及地壳增生的地球化学制约[J].岩石学报, (增刊), 1995:112-124.

    Google Scholar

    [24] Zhou M F, Zhang H F, Robinson P T, et al.Comments on Petrology of the Hegenshan ophiolite and its implication for the tectonic evolution of northern China[J].Earth and Planetary Science Letters, 2003, 217(1/2):207-210.

    Google Scholar

    [25] 王树庆, 许继峰, 刘希军, 等.内蒙古朝克山蛇绿岩地球化学:洋内弧后盆地的产物?[J].岩石学报, 2008, 24(12):2869-2879.

    Google Scholar

    [26] 王成, 任利民, 张晓军, 等.内蒙古崇根山蛇绿岩前弧玄武岩的发现及其地质意义[J].地质科技情报, 2019, 3:1-11.

    Google Scholar

    [27] Shervais J W.Birth, death and resurrection:the life cycle of sprasubduction zone ophiolites[J].Geochemistry Geophysics Geosystems, 2001, 2(1):148-159.

    Google Scholar

    [28] Reagan M K, Ishizuka O, Stern R J, et al.Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J].Geochemistry, Geophysics, Geosystems, 2010, 11:Q03X12.

    Google Scholar

    [29] Reagan M K, Pearce J A, Petronotis K, et al.Subduction initiation and ophioite crust:New insights from IODP drilling[J].International Geology Review, 2017, 59:1439-1450. doi: 10.1080/00206814.2016.1276482

    CrossRef Google Scholar

    [30] Whattam S A, Stern R J.The 'subduction initiation rule':A key for linking ophiolites, intra oceanic forearcs, and subduction initiation[J].Contributions to Mineralogy and Petrology, 2011, 162:1031-1045. doi: 10.1007/s00410-011-0638-z

    CrossRef Google Scholar

    [31] Li H Y, Taylor R N, Prytulak J, et al.Radiogenic isotopes document the start of subduction in the Western Pacific[J].Earth and Planetary Science Letters, 2019, 518:197-210. doi: 10.1016/j.epsl.2019.04.041

    CrossRef Google Scholar

    [32] Jahn B M, Windley B, Natal'in B, et al.Phanerozoic continental growth in Central Asia[J].Journal of Asian Earth Sciences, 2004, 23(5):599-603. doi: 10.1016/S1367-9120(03)00124-X

    CrossRef Google Scholar

    [33] Badarch G, Cunningham W D, Windley B F.A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of Central Asia[J].Journal of Asian Earth Sciences, 2002, 21(1):87-110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [34] Jian P, Liu D Y, Kröner A, et al.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J].Lithos, 2008, 101(3/4):233-259.

    Google Scholar

    [35] Jian P, Liu D Y, Kröner A, et al.Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J].Lithos, 2010, 118(1/2):169-190.

    Google Scholar

    [36] Jian P, Kröner A, Windley B F, et al.Carboniferous and Cretaceous mafic-ultramafic massifs in Inner Mongolia(China):A SHRIMP zircon and geochemical study of the previously presumed integral "Hegenshan ophiolite"[J].Lithos, 2012, 142-143:48-66. doi: 10.1016/j.lithos.2012.03.007

    CrossRef Google Scholar

    [37] 邵济安, 张丽莉, 周新华, 等.对内蒙古贺根山蛇绿岩的新认识[J].岩石学报, 2020, 35(09):2864-2872.

    Google Scholar

    [38] Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [39] Anderson T.Correction of common lead in U-Pb analyses that do not report 204Pb[J].Chemical Geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [40] Ludwig K R.Isotope:A plotting and regression program for radiogenic-isotope data[J].US Geological Survey Open-File Report, 1991, 39:91-445.

    Google Scholar

    [41] Ludwig K R.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[J].Berkeley:Berkeley Geochronological Center, Special Publication, 2003, 4:1-71.

    Google Scholar

    [42] Yuan H L, Gao S, Liu X M, et al.Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2004, 28(3):353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [43] 刘建辉, 刘敦一, 张玉海, 等.使用SHRIMP测定锆石铀-铅年龄的选点技巧[J].岩矿测试, 2011, 30(3):265-268.

    Google Scholar

    [44] 李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究, 2009, 32(3):161-174.

    Google Scholar

    [45] Su W B, Zhang S H, Warren D, et al.SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J].Gondwana Research, 2008, 14(3):543-553. doi: 10.1016/j.gr.2008.04.007

    CrossRef Google Scholar

    [46] Belousova E, Griffin W, O'reilly S Y, et al.Igneous zircon:trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [47] Claesson S, Vetrin V, Bayanova T, et al.U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia:a record of geological evolution from the Archaean to the Palaeozoic[J].Lithos, 2000, 51(1/2):95-108.

    Google Scholar

    [48] Winchester J A, Floyd P A.Geochemical discrimination of different magma series and their differentiation products using immobile elements[J].Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [49] Middlemost E A K.Magmas and Magmatic Rocks[M].London:Longman, 1985:1-266.

    Google Scholar

    [50] Martin H.The mechanisms of petrogenesis of the Archaean conti nental crust-comparison with modem processes[J].Lithos, 1993, 30:373-388. doi: 10.1016/0024-4937(93)90046-F

    CrossRef Google Scholar

    [51] Martin H.Adakitic magmas:Modern analogues of Archaean gran-itoids[J].Lithos, 1999, 46:411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    [52] Boynton W V.Cosmochemistry of the rare earth elements: meteorite studies[C]//Henderson P E.Rare Earth Element Geochemistry.Developments in Geochemistry.Elsevier, Amsterdam, 1984: 63-114.https://www.sciencedirect.com/science/article/pii/B9780444421487500083

    Google Scholar

    [53] Sun S S, McDonough W F.Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society, London, Special Publication, 1989, 42: 313-345.

    Google Scholar

    [54] 张旗, 王焰, 王元龙.埃达克岩与构造环境[J].大地构造与成矿学, 2003, 27(2):706-713.

    Google Scholar

    [55] 张旗, 许继峰, 王焰, 等.埃达克岩的多样性[J].地质通报, 2004, 23(9/10):959-965.

    Google Scholar

    [56] Defant M J, Drummond M S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature, 1990, 347:662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [57] Kelemen P B, Hangh K, Ureenem A R.One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L.Treatise on Geochemistry, 2003, 3: 593-659.https://www.sciencedirect.com/science/article/pii/B9780080959757003235

    Google Scholar

    [58] 熊小林, 蔡志勇, 牛贺才, 等.东天山晚古生代埃达克岩成因及铜金成矿意义[J].岩石学报, 2005, 21(3):967-976.

    Google Scholar

    [59] 张旗, 王焰, 钱青, 等.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J].岩石学报, 2001, 17:236-244.

    Google Scholar

    [60] 张旗, 秦克章, 王元龙, 等.加强埃达克岩研究, 开创中国Cu、Au等找矿工作的新局面[J].岩石学报, 2004, 20(2):195-204.

    Google Scholar

    [61] Wang Q, Zhao Z H, Xu J F, et al.Petrologenesis and metallogeneais of the Y anshanian adakite-like rock in the Eastem Yangtze Block[J].Science in China, Series D, 2003, 46(Supp):164-176.

    Google Scholar

    [62] Wang Q, McDermott F, Xu J F, et al.Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northem Tibet:Lower-crustal melting in an intracontinental setting[J].Geology, 2005, 33:465-468. doi: 10.1130/G21522.1

    CrossRef Google Scholar

    [63] 刘红涛, 张旗, 刘建明, 等.埃达克岩与斑岩铜矿-浅成热液金矿:有待深人研究的岩浆成矿关系[J].岩石学报, 2004, 20:205-218.

    Google Scholar

    [64] Xu J F, Shinjio R, Defant M J, et al.Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]Geology, 2002, 12:1111-1114.

    Google Scholar

    [65] 许继峰, 王强.Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例[J].地学前缘, 2003, 10:401-406.

    Google Scholar

    [66] Castillo P R.Adakite petrogenesis[J].Lithos, 2012, 134:304-316.

    Google Scholar

    [67] Castillo P R.Janney P E, Solidum R U.Petrology and geochemistry ofCamiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting[J].Contributions to Mineralogy and Petrology, 1999, 134:33-51. doi: 10.1007/s004100050467

    CrossRef Google Scholar

    [68] Macpherson C G, Dreher S T, Thirlwall M F.Adakites without slab melting:High pressure differentiation of island arc magma, Mindanao, the Philippines[J].Earth and Planetary Science Letters, 2006, 243:581-593. doi: 10.1016/j.epsl.2005.12.034

    CrossRef Google Scholar

    [69] Rapp R P, Shimizu N, Norman M D, et al.Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa[J].Chemical Geology, 1999, 160.335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [70] Defant M J, Kepezhinskas P.Evidence suggests slab melting in arc magmas[J].EOS, 2001, 82:62-69.

    Google Scholar

    [71] Rapp R P.Partial melting of metabasalts at 2-7GPa:Experimental results and implications for lower crustal and subduction zone processes[J].Minera logical Magazine, 1994, 58A:760. doi: 10.1180/minmag.1994.58A.2.132

    CrossRef Google Scholar

    [72] Green T H.Experimental sudies of trace-element partitioning applicable to igneous petrogenesis-Sedona, 16years later[J].Chemical Geology, 1994, 117:1-36. doi: 10.1016/0009-2541(94)90119-8

    CrossRef Google Scholar

    [73] Davidson J, MacPherson C, Turner S.Amphibole control in the differentiation of arc magmas[J].Geochimica et Cosmochimica Acta, 2007, 71:A204-A204.

    Google Scholar

    [74] Chung S L, Chu M F, Ji J Q, et al.The nature and timing of crustal thickening in southern Tibet:Geochemical and zircon Hf isotopic constrains from postcollisional adakitics[J].Tectonophysics, 2009, 177:18-36.

    Google Scholar

    [75] 刘敦一, 简平, 张旗, 等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].地质学报, 2003, 77(3):317-330.

    Google Scholar

    [76] 王璐, 赵庆英, 李鹏川, 等.内蒙古巴林右旗东梁岩体LA-ICP-MS锆石U-Pb定年及地球化学特征[J].世界地质, 2016, 35(2):370-386.

    Google Scholar

    [77] 王焰, 张旗, 钱青.埃达克(adakite)的地球化学特征及其构造意义[J].地质科学, 2000, 35(2):251-256.

    Google Scholar

    [78] 许立权, 邓晋福, 陈志勇.内蒙古达茂旗北部奥陶纪埃达克岩类的识别及其意义[J].现代地质, 2003, 17(4):428-434.

    Google Scholar

    [79] Rapp R P, Watson E B.De hydration melting of meta basalt at 8~32kbar:Implications for continental growth and crustmantle recycling[J].Journal of Petrology, 1995, 36(4):891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [80] Atherton M P, Petford N.Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature, 1993, 362(6416):144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [81] Zheng Y Ch, Hou Z Q, Gong Y L, et al.Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet:Implications for mid-ocean ridge subduction and crustal growth[J].Lithos, 2014, 190/191(3):240-263.

    Google Scholar

    [82] Ishizuka O, Tani K, Reagan M.KIzu-Bonin-Mariana forearc Crust as a modern ophiolite Analogue[J].Elements, 2014, 10:115-120. doi: 10.2113/gselements.10.2.115

    CrossRef Google Scholar

    [83] Stern R J M, Reagan Q, Ishizuka Y O, et al.To under stand subduction initiation, study forearc crust:To understand forearc crust, study ophiolites[J].Lithosphere, 2012, 4:469-483. doi: 10.1130/L183.1

    CrossRef Google Scholar

    [84] Pearce J A, Lippard S J, Roberts S.Characteristics and tectonic significance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F.Marginal Basin Geology.Geological Society of London, Special Publication, 1984, 16: 77-94.Characteristics and tectonic significance of supra-subduction zone ophiolites

    Google Scholar

    [85] Pearce J A.Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oce-anic crust[J].Lithos, 2008, 100:14-48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    [86] Wood D A.The application of Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J].Earth and Planetary Science Letters, 1980, 50:11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [87] Condie K C.Geochemistry and tectonic setting of early Protero zoic supracrustal rocks in theSouthwest United States[J].Journal of Geology, 1986, 94:845-861. doi: 10.1086/629091

    CrossRef Google Scholar

    [88] 李奋其, 李益多, 张士贞.西藏朗县地区增生楔杂岩带90Ma岛弧型深成岩浆活动和意义[J].中国地质, 2016, 43(1):142-152.

    Google Scholar

    [89] 郝百武.内蒙古那仁乌拉埃达克质花岗岩的发现、成因、锆石U-Pb年龄及其构造意义[J].矿物岩石, 2012, 32(1):28-39.

    Google Scholar

    [90] 曾俊杰, 郑有业, 齐建宏, 等.内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J].地球科学, 2008, 33(6):755-762.

    Google Scholar

    [91] 李承东, 张福勤, 苗来成, 等.吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报, 2007, 23(4):767-776.

    Google Scholar

    [92] Sengör, A M C, Natal'in B A, Burtman V S.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth inEurasia[J].Nature, 1993, 364:299-307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [93] Sengör A M C, Natal'in B A.Paleotectonics ofAsia: fragments of a synthesis[C]//Yin A, Harrison M.The tectonic evolution of Asia.Cambridge: Cambridge University Press, 1996: 486-641.https://www.researchgate.net/publication/284695939_Paleotectonics_of_Asia_Fragments_of_a_syn_thesis

    Google Scholar

    [94] Dilek Y, Furnes H.Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J].Lithos, 2009, 113:1-20. doi: 10.1016/j.lithos.2009.04.022

    CrossRef Google Scholar

    [95] Dilek Y, Furnes H.Ophiolite genesis and global tectonics:Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J].GSA Bulletin, 2011, 123:387-411. doi: 10.1130/B30446.1

    CrossRef Google Scholar

    [96] Dilek Y, Furnes H.Ophiolites and their origins[J].Elements, 2014, 10:93-100. doi: 10.2113/gselements.10.2.93

    CrossRef Google Scholar

    [97] Ishizuka O, Kimura J I, Li Y B, et al.Early stages in the evolution of Izu-Bonin arc volcanism:New age, chemical, & isotopic constraints[J].Earth and Planetary Science Letters, 2006, 250:385-401. doi: 10.1016/j.epsl.2006.08.007

    CrossRef Google Scholar

    [98] Shang Q H.The discovery and significance of Permian radiolarians Northern Orogenic Belt in the northern and middle Inner Mongolia[J].Chinese Science Bulletin, 2004, 49:2574-2579. doi: 10.1360/csb2004-49-24-2574

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(698) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint