2020 Vol. 39, No. 9
Article Contents

CHEN Chao, TENG Xuejian, PAN Zhilong, XIU Di, HE Jiaoyue, ZHAO Huaping, ZHANG Huan, ZHANG Jinlong, YANG Ju. LA-ICP-MS zircon U-Pb age of A-type granite from the Shibanjing area of middle Beishan orogenic belt, Inner Mongolia, and its constraint on closure time of Beishan Ocean[J]. Geological Bulletin of China, 2020, 39(9): 1448-1460.
Citation: CHEN Chao, TENG Xuejian, PAN Zhilong, XIU Di, HE Jiaoyue, ZHAO Huaping, ZHANG Huan, ZHANG Jinlong, YANG Ju. LA-ICP-MS zircon U-Pb age of A-type granite from the Shibanjing area of middle Beishan orogenic belt, Inner Mongolia, and its constraint on closure time of Beishan Ocean[J]. Geological Bulletin of China, 2020, 39(9): 1448-1460.

LA-ICP-MS zircon U-Pb age of A-type granite from the Shibanjing area of middle Beishan orogenic belt, Inner Mongolia, and its constraint on closure time of Beishan Ocean

  • The Shibanjing A-type granite intrusion is located in the middle section of the Beishan orogenic belt of Inner Mongolia.Its lithologic composition is dominated by syenogranites, followed by monzogranite.The age of the granite obtained by LA-ICP-MS zircon U-Pb dating is 395.6±4.9 Ma(MSWD=3.6, n=15), suggesting Early Devonian.The rocks belong to the meta-aluminium-weak peraluminous high potassium calc-alkaline series and are characterized by high silicon(SiO2=72.71%~76.43%), rich alkali(K2O+Na2O=7.80%~9.23%), low aluminum(Al2O3=12.09%~13.73%), poor magnesium(MgO=0.06%~0.51%), calcium(CaO=0.44%~1.69%)and K2O > Na2O.The chondrite-normalized REE patterns of the granite belong to the "seagull" pattern of the right-type, with significant negative Eu anomalies(δ Eu=0.02~0.35, averaging 0.16).The granitic rocks are enriched in high field strength elements(e.g., Zr, Hf, U and Th)and large ion lithophile elements(e.g., K and Rb)but depleted in P, Ti, Ba, Sr.All these characteristics resemble features of A-type granites which originated from the partial melting of lower crust under high temperature conditions and the subsequent fractional crystallization of feldspar, apatite, titanite and some other rocks.The tectonic discriminant diagram indicates that it has the characteristics of A2 granite, which was formed in the post-collision extension tectonic environment, indicating that the closure time of the Beishan Ocean represented by the Niuquanzi-Xichangjing ophiolite belt was prior to the Early Devonian, and that the structure of the area in the Early Devonian had changed from a compressional system to an extensional system.

  • 加载中
  • [1] 左国朝, 何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990:1-226.

    Google Scholar

    [2] 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版), 2009, 39(4):584-605.

    Google Scholar

    [3] 杜玉良, 殷先明, 冯治汉, 等.北山地区中生代构造-岩浆活动与成矿[J].西北地质, 2009, 42(2):48-54.

    Google Scholar

    [4] Xiao W J, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].American Journal of Science, 2010, 310(10):1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [5] 刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, 28(1):37-48.

    Google Scholar

    [6] 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西北地质, 2002, 35(4):30-40.

    Google Scholar

    [7] 聂凤军, 江思宏, 白大明, 等.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002:1-408.

    Google Scholar

    [8] 龚全胜, 刘明强, 李海林, 等.甘肃北山造山带类型及基本特征[J].西北地质, 2002, 35(3):28-34.

    Google Scholar

    [9] 杨合群, 李英, 李文明, 等.北山成矿构造背景概论[J].西北地质, 2008, 41(1):22-28.

    Google Scholar

    [10] 贺振宇, 宗克清, 姜洪颖, 等.北山造山带南部早古生代构造演化:来自花岗岩的约束[J].岩石学报, 2014, 30(8):2324-2338.

    Google Scholar

    [11] 郑荣国, 吴泰然, 张文, 等.北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J].地质学报, 2012, 86(6):961-971.

    Google Scholar

    [12] 余吉远, 李向民, 王国强, 等.甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2012, 31(12):2038-2045.

    Google Scholar

    [13] 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031.

    Google Scholar

    [14] 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694.

    Google Scholar

    [15] 周国庆, 陈小明, 赵建新, 等.内蒙古石板井-小黄山与蛇绿岩相伴的变质岩及其演化[J].高校地质学报, 2001, 7(3):229-344.

    Google Scholar

    [16] 杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西北地质, 2010, 43(1):26-36.

    Google Scholar

    [17] 徐学义, 何世平, 王洪亮, 等.中国西北部地质概论—秦岭、祁连、天山地区[M].北京:科学出版社, 2008:1-347.

    Google Scholar

    [18] 孟贵祥, 吕庆田, 严加永, 等.北山内蒙古地区铁矿成矿特征及其找矿前景[J].矿床地质, 2009, 28(6):815-829.

    Google Scholar

    [19] 廖云峰, 胡新茁, 程海峰, 等.内蒙古月牙山蛇绿岩的岩石学、地球化学特征及其地质意义[J].地质通报, 2016, 35(8):1243-1254.

    Google Scholar

    [20] Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology, 2009, 51:537-571.

    Google Scholar

    [21] Ludwig K R.Isoplot/EX version 2.49.A geochronological toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Center Special Publication No.1a, 2003:1-56.

    Google Scholar

    [22] Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth Science Research, 1994, 37:215-224.

    Google Scholar

    [23] Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of American Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [24] Thompson R T.British Tertiary volcanic province[J].Scottish Journal of Geology, 1982, 18:49-107. doi: 10.1144/sjg18010049

    CrossRef Google Scholar

    [25] Sun S S, Mc Donough W F.Chemical and isotopic system atics of oceanic basalts:implications for mantle compositi on and processes[J].London:Geological Society Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [26] 贾小辉, 王强, 唐功建.A型花岗岩的研究进展及意义[J].大地构造与成矿, 2009, 33(3):465-480.

    Google Scholar

    [27] 吴锁平, 王梅英, 戚开静.A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 2007, 26(1):57-66.

    Google Scholar

    [28] King P L, White A J R, Chappell B W, et al.Characterization and origin aluminous A Type granites from Lachlan Fold Belt.Southeastern Australia[J].J.Petrol., 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [29] 王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-306.

    Google Scholar

    [30] 李小伟, 莫宣学, 赵志丹, 等.关于A型花岗岩判别过程中若干问题的讨论[J].地质通报, 2010, 29(2/3):278-285.

    Google Scholar

    [31] Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contrib.Mineral.Petrol., 1987, 95:407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [32] Watson E B, Harrison T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters, 1983, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [33] Loiselle M C, Wones D R.Characteristics of anorogenic granites[J].Geological Society of America(Abstracts with Programs), 1979, 11:468.

    Google Scholar

    [34] Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [35] Eby G N.The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos, 1990, 26(1/2):115-134.

    Google Scholar

    [36] Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J].Geology, 1992, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

    CrossRef Google Scholar

    [37] Turner S P, Foden J D, Morrison R S.Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J].Lithos, 1992, 28(2):151-179.

    Google Scholar

    [38] 韩宝福, 王式洗, 江博明.新疆乌伦古河碱性花岗岩Nd同位素特征及其对显生宙地壳生长的意义[J].科学通报, 1997, 42(17):1829-1832.

    Google Scholar

    [39] Harris C, Marsh J S, Milner S C.Petrology of the alkaline core of the Messum igneous complex, Namibia:Evidence for the progressively decreasing effect of crustal contamination[J].Journal of Petrology, 1999, 40:1377-1397. doi: 10.1093/petroj/40.9.1377

    CrossRef Google Scholar

    [40] Mingram B, Trumbull R B, Littman S, et al.A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:Evidence for mixing of crust and mantle-derived components[J].Lithos, 2000, 54:1-22. doi: 10.1016/S0024-4937(00)00033-5

    CrossRef Google Scholar

    [41] Yang J H, Wu F Y, Chung S L, et al.A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos, 2006, 89:89-106. doi: 10.1016/j.lithos.2005.10.002

    CrossRef Google Scholar

    [42] CollinsW J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to south eastern Australia[J].Contrib.Mineral.Petrol., 1982, 80:189-200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [43] Clemens J D, Holloway J R, White A J R.Origin of A-type granites:Experimental constraints[J].American Minerologist, 1986, 71:317-324.

    Google Scholar

    [44] Anderson J L, Bender E E.Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America[J].Lithos, 1989, 23:19-52. doi: 10.1016/0024-4937(89)90021-2

    CrossRef Google Scholar

    [45] Creaser R A, Price R C, Wormald R J.A-type granites revisited:Assessment of a residual source model[J].Geology, 1991, 19:163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2

    CrossRef Google Scholar

    [46] Frost C D, Frost B R.Reduced rapakivi-type granites:The tholeiite connection[J].Geology, 1997, 25:647-650. doi: 10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2

    CrossRef Google Scholar

    [47] Wu F Y, Sun D Y, Li X H, et al.A-type granites in Northeastern China:Age and geochemical constraints on their petrogenesis[J].Chemical Geology, 2002, 187:143-173. doi: 10.1016/S0009-2541(02)00018-9

    CrossRef Google Scholar

    [48] Wilson B M.Igneous Petrogenesis:A Global Tectonic Approach[M].London:Unwin Hyman, 2007:1-466.

    Google Scholar

    [49] Creaser R A, Price R C, Wormald R J.A-type granites revisited:assessment of a residual-source model[J].Geology, 1991, 19(2):163-166.

    Google Scholar

    [50] Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chemical Geology, 1995.120:347-359. doi: 10.1016/0009-2541(94)00145-X

    CrossRef Google Scholar

    [51] Hofmann A W.Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust Earth Planet[J].Sci.Lett., 1988, 90:297-314.

    Google Scholar

    [52] Rapp R P, Watson E B.Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling[J].Journal of Petrology, 1995, 36(4):891-931 doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [53] 吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238.

    Google Scholar

    [54] 洪大卫, 王式洸, 韩宝福, 等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑), 1995, 25(4):418-426.

    Google Scholar

    [55] Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985, 48, (1):43-55.

    Google Scholar

    [56] 左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15.

    Google Scholar

    [57] 陈超, 修迪, 潘志龙, 等.北山造山带中部早古生代伸展构造体制:来自石板井辉长岩的年代学及地球化学证据[J].地质学报, 2017, 91(8):1661-1673.

    Google Scholar

    [58] 何世平, 周会武, 任秉琛, 等.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 2005, 38(3):6-15.

    Google Scholar

    [59] 孙立新, 张家辉, 任邦方, 等.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志, 2017, 36(2):131-147.

    Google Scholar

    [60] 杨合群, 赵国斌, 李英, 等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报, 2012, 31(2/3):413-421.

    Google Scholar

    [61] 修迪, 陈超, 专少鹏, 等.北山石板井地区英云闪长岩-石英闪长岩体锆石U-Pb年龄、成因及对古洋盆俯冲作用时限的制约[J].地质通报, 2018, 37(6):975-986.

    Google Scholar

    [62] 专少鹏, 陈超, 申宗义, 等.北山地区早古生代洋盆俯冲记录—来自石板井高镁闪长岩的年代学、地球化学证据[J].岩石矿物学杂志, 2018, 37(4):533-546.

    Google Scholar

    [63] 程先钰, 任邦方, 田健, 等.内蒙古北山白云山蛇绿混杂岩带南部锡林柯博组碎屑岩地球化学特征、源区属性及构造意义[J].地质通报, 2020, 39(6):893-904.

    Google Scholar

    [64] 张元元, 郭召杰.甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J].岩石学报, 2008, 24(4):803-809.

    Google Scholar

    [65] 潘志龙, 张欢, 陈超, 等.内蒙古北山敖包呼图仁斑状正长花岗岩锆石U-Pb年龄、Lu-Hf同位素组成及其地质意义[J].地质科学, 2017, 52(1):301-316.

    Google Scholar

    程海峰, 廖云峰, 徐旭明, 等.内蒙古1: 5万1524.6高地、二龙包西、高地、炮台山西幅区域地质矿产调查报告.2015.

    Google Scholar

    潘志龙, 魏文通, 刘增效, 等.内蒙古1: 5万基东、尖山、蒜井子、三道明水幅区域地质矿产调查报告.2016.

    Google Scholar

    陈超, 赵华平, 张金龙, 等.内蒙古1: 5万西林陶勒、梧桐井、石桩子井、石板井幅区域地质矿产调查报告.2017.

    Google Scholar

    陈超, 刘增校, 潘志龙, 张欢, 张金龙.1: 5万石板井等四幅区域地质图.2016.

    Google Scholar

    潘志龙, 陈超, 刘增校, 张欢, 王硕.1: 5万基东等四幅区域地质图.2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(787) PDF downloads(5) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint