2021 Vol. 40, No. 6
Article Contents

WANG Hui, FAN Yuhai, LIAO Youyun, ZHANG Shaopeng, YANG Chen, XU Jiang, CHEN Ruili. Geology and genesis of the Dahuangshan REE-Nb-Fe polymetallic mineralization zone in Karakoram Range[J]. Geological Bulletin of China, 2021, 40(6): 988-1000.
Citation: WANG Hui, FAN Yuhai, LIAO Youyun, ZHANG Shaopeng, YANG Chen, XU Jiang, CHEN Ruili. Geology and genesis of the Dahuangshan REE-Nb-Fe polymetallic mineralization zone in Karakoram Range[J]. Geological Bulletin of China, 2021, 40(6): 988-1000.

Geology and genesis of the Dahuangshan REE-Nb-Fe polymetallic mineralization zone in Karakoram Range

More Information
  • The study on geology and genesis of the rare earth niobium iron titanium polymetallic mineralization zone in Dahuangshan, Kunlun Mountain, Kara can provide the basis for the exploration work in this area.Based on detailed field geological survey and summarizing of the geological characteristics of the Dahuangshan RE-Nb-Fe-Ti deposit, together with microscopic identification and geochemical analysis, the genetic types and mineralization of the iron ore are discussed.The analysis of structural deformation after metallogenic period can lead to the prediction of orebody location and prospecting target generation.The depositional environment of the ore-bearing formation in the Dahuangshan REE-Nb-Fe-Ti mineralization belt is littoral-shallow sea carbonate platform facies.The mineralization zone is located in the upper part (limestone Formation) of the Pasi Group (ore-bearing argillaceous limestone), and extends over 30 km in the area, two mineralized bodies (Ⅰ-1, Ⅰ-1) were found in the west section, and seven mineralized bodies (Ⅱ-1~Ⅱ-7) were found in the east section, Single mineralized bodies are generally 170-2000 m long and 10-32 m thick.whose attitude is consistent with strata.The ore assaying show that the mineralized bodies contain RE-Nb-Fe-Ti and other metallogenic elements.The genetic type of the deposit is offshore marine sedimentary type.The ore source is lateritic weathering crust in ancient continental area.It is presumed that the original rock is rapidly transported by mixing fluid of sediment gravity flow and colloidal solution, and rapidly unloaded and accumulated by event sedimentation in coastal zone.After the metallogenic period, the ore-bearing formation underwent intense structural transformation.The mineralized layer and the ore-bearing formation were deformed synchronously with various ore-controlling structures.The eastern part of the ore-bearing formation is characterized by a compound-superimposed fold structure, while the western part is characterized by a compression fault block-steeply dipping monoclinic structure.This area shows great prospecting potential.Through further mineral geological work, it is expected to achieve important prospecting breakthroughs for Fe, Al and Ti, especially rare and rare earth elements.After the metallogenic period, the ore-bearing structure underwent a strong structural transformation, and formed a fault-fold belt with NWW direction on the whole.The compound-superimposed inverted "S" fold structure developed in the belt constituted the most characteristic ore-controlling structural style in the area. This area shows great prospecting potential.Through further mineral geological work, it is expected to achieve important prospecting breakthroughs for Fe, Al and Ti, especially rare and rare earth elements.

  • 加载中
  • [1] 程裕淇. 中国区域地质概论[M]. 北京: 地质出版社, 1994: 1-200.

    Google Scholar

    [2] 潘裕生. 昆仑山区构造区划初探[J]. 自然资源学报, 1989, 4(3): 196-203. doi: 10.3321/j.issn:1000-3037.1989.03.002

    CrossRef Google Scholar

    [3] 潘裕生. 青藏高原第五缝合带的发现与论证[J]. 地球物理学报, 1994, 37(2): 184-192. doi: 10.3321/j.issn:0001-5733.1994.02.006

    CrossRef Google Scholar

    [4] Wang X, Zhang X, Gao J, et al. A slab break-off model for the submarine volcanic-hosted iron mineralization in the Chinese Western Tianshan: Insights from Paleozoic subduction-related to post-collisional magmatism[J]. Ore Geology Reviews, 2018, 92: 144-160. doi: 10.1016/j.oregeorev.2017.11.015

    CrossRef Google Scholar

    [5] Li W, Dong Y, Guo A, et al. Chronology and tectonic significance of Cenozoic faults in the Liupanshan Arcuate Tectonic Belt at the northeastern margin of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2013, 73: 103-113. doi: 10.1016/j.jseaes.2013.04.026

    CrossRef Google Scholar

    [6] Wang C, Liu A, Wang H, et al. Recognition and tectonic implications of an extensive Neoproterozoic volcano-sedimentary rift basin along the southwestern margin of the Tarim Craton, northwestern China[J]. Precambrian Research, 2013, 257: 65-82.

    Google Scholar

    [7] Liu L, Ya B, Lei L, et al. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China[J]. Science China Earth Sciences, 2015, 58: 1513-1522. doi: 10.1007/s11430-015-5151-1

    CrossRef Google Scholar

    [8] Fan Y, Wan Y, Wang H, et al. Application of airborne hyperspectral remote sensing image data in the gold-silver-lead-zinc ore district of Huaniushan, Gansu, China[J]. Eologia Croatica, 2021, 74(1): 73-84 doi: 10.4154/gc.2021.04

    CrossRef Google Scholar

    [9] 巫建华, 刘帅. 大地构造学概论与中国大地构造学纲要[M]. 北京: 地质出版社, 2008.

    Google Scholar

    [10] 杨克明. 论西昆仑大陆边缘构造演化及塔里木西南盆地类型[J]. 地质论评, 1994, 1: 9-18. doi: 10.3321/j.issn:0371-5736.1994.01.002

    CrossRef Google Scholar

    [11] 潘裕生, 周伟明, 许荣华, 等. 昆仑山早古生代地质特征与演化[J]. 中国科学(D辑), 1996, 26(4): 302-307. doi: 10.3321/j.issn:1006-9267.1996.04.003

    CrossRef Google Scholar

    [12] 潘裕生. 青藏高原的形成与隆升[J]. 地学前缘, 1999, 6(3): 153-163. doi: 10.3321/j.issn:1005-2321.1999.03.015

    CrossRef Google Scholar

    [13] 姜春发, 朱松年. 构造迁移论概述[J]. 中国地质科学院院报, 1992, 25: 1-14.

    Google Scholar

    [14] 姜春发. 中央造山带几个重要地质问题及其研究进展(代序)[J]. 地质通报, 2002, 21(Z2): 453-455.

    Google Scholar

    [15] 姜春发, 杨经绥, 冯秉贵, 等. 昆仑开合构造[M]. 北京: 地质出版社, 1992: 161-168.

    Google Scholar

    [16] 李涛, 王宗秀. 塔里木地块北部横向构造及断条模式[J]. 中国地质, 2006, 33(1): 14-27.

    Google Scholar

    [17] 陆松年, 李怀坤, 陈志宏. 塔里木与扬子新元古代热-构造事件特征、序列和时代——扬子与塔里木连接(YZ-TAR)假设[J]. 地学前缘, 2003, 10(4): 321-326. doi: 10.3321/j.issn:1005-2321.2003.04.001

    CrossRef Google Scholar

    [18] 杨经绥, 王希斌, 史仁灯, 等. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳[J]. 中国地质, 2004, 31(3): 225-239. doi: 10.3969/j.issn.1000-3657.2004.03.001

    CrossRef Google Scholar

    [19] 李文渊, 张照伟, 高永宝, 等. 秦祁昆造山带重要成矿事件及其构造演化响应[C]//陈毓川, 薛春纪, 张长青. 主攻深部挺进西部放眼世界——第九届全国矿床会议论文集. 北京: 地质出版社, 2008: 15-16.

    Google Scholar

    [20] 康磊, 校培喜, 高晓峰, 等. 西昆仑西段晚古生代-中生代花岗质岩浆作用及构造演化过程[J]. 中国地质, 2015, 42(3): 533-552. doi: 10.3969/j.issn.1000-3657.2015.03.011

    CrossRef Google Scholar

    [21] 李文渊, 张照伟, 高永宝, 等. 秦祁昆造山带重要成矿事件与构造响应[J]. 中国地质. 2011, 38(5): 1135-1149. doi: 10.3969/j.issn.1000-3657.2011.05.002

    CrossRef Google Scholar

    [22] 孙海田, 李纯杰, 李锦荣, 等. 新疆西昆仑昆盖山地区铜矿资源找矿地质条件[J]. 中国地质, 1997, 24(11): 29-30.

    Google Scholar

    [23] 王书来, 汪东波, 祝新友. 新疆西昆仑金(铜)矿找矿前景分析[J]. 地质找矿论丛, 2000, 15(3): 224-229. doi: 10.3969/j.issn.1001-1412.2000.03.004

    CrossRef Google Scholar

    [24] 西北地质矿产研究所. 西北地区矿产资源找矿潜力[M]. 北京: 地质出版社, 2006.

    Google Scholar

    [25] 杨合群, 姜寒冰, 谭文娟, 等. 西北地区重要矿产概论[M]. 武汉: 中国地质大学出版社, 2017: 19.

    Google Scholar

    [26] 李先军, 赵祖应. 西昆仑北段矿产分布特征及找矿方向浅析[J]. 地质与勘探, 2009, 45(2): 1-7. doi: 10.3969/j.issn.1001-1986.2009.02.001

    CrossRef Google Scholar

    [27] 李宝强, 杨万志, 赵树铭, 等. 西昆仑成矿带成矿特征及勘查远景[J]. 西北地质, 2006, 39(2): 128-142. doi: 10.3969/j.issn.1009-6248.2006.02.008

    CrossRef Google Scholar

    [28] 李文渊. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 2015, 42(3): 365-380. doi: 10.3969/j.issn.1000-3657.2015.03.001

    CrossRef Google Scholar

    [29] Qin Y, Feng Q, Chen G, et al. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen[J]. Journal of Asian Earth Sciences. 2018, 156: 145-166. doi: 10.1016/j.jseaes.2018.01.009

    CrossRef Google Scholar

    [30] Hou Q, Mou C, Wang Q, et al. Provenance and tectonic setting of the Early and Middle Devonian Xueshan Formation, the North Qilian Belt, China[J]. Geological Journal, 2018, 53: 1404-1422. doi: 10.1002/gj.2963

    CrossRef Google Scholar

    [31] Fan Y, Wang H. Application of remote sensing to identify copper-lead-zinc deposits in the Heiqia Area of the West Kunlun Mountains, China[J]. Scientific Reports, 2020, (10): 12309.

    Google Scholar

    [32] Fan Y, Wang H, Yang X, et al. Application of high resolution remote sensing technology for the iron ore deposits of the West Kunlun mountains in China[J]. Eologia Croatica, 2021, 74(1): 57-72 doi: 10.4154/gc.2021.03

    CrossRef Google Scholar

    [33] 董永观, 郭坤一, 肖惠良, 等. 西昆仑地区成矿远景[J]. 中国地质, 2003, 30(2): 173-178.

    Google Scholar

    [34] 褚少雄. 西昆仑及其邻区成矿地质背景及成矿规律探讨[D]. 中国地质大学硕士学位论文, 2008.

    Google Scholar

    [35] 贾群子. 新疆西昆仑块状硫化物铜矿床[M]. 北京: 地质出版社, 1999.

    Google Scholar

    [36] 侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型: 成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2): 123-144. doi: 10.3969/j.issn.0258-7106.2008.02.001

    CrossRef Google Scholar

    [37] 李文渊, 张照伟, 高永宝, 等. 秦祁昆造山带重要成矿事件与构造响应[J]. 中国地质, 2011, 38(5): 41-50.

    Google Scholar

    [38] 赵佳楠, 刘正军. 新疆西昆仑造山带北缘中元古代帕什托克闪长岩侵入序列及其地质意义[J]. 中国地质, 2014, 41(1): 92-107. doi: 10.3969/j.issn.1000-3657.2014.01.007

    CrossRef Google Scholar

    [39] 高晓峰, 校培喜, 康磊, 等. 新疆塔什库尔干塔阿西一带火山岩成因及地质意义[J]. 地球科学-中国地质大学学报, 2013, 38(6): 1169-1182.

    Google Scholar

    [40] 贠杰, 高晓峰, 校培喜, 等. 西昆仑下石炭统乌鲁阿特组火山岩地球化学特征及地质意义[J]. 中国地质, 2015, 42(3): 587-600. doi: 10.3969/j.issn.1000-3657.2015.03.014

    CrossRef Google Scholar

    [41] 新疆自治区地质矿产局. 新疆自治区区域地质志[M]. 北京: 地质出版社, 1993: 1-841.

    Google Scholar

    [42] 王永, 李德贵, 肖序常, 等. 西昆仑山前晚新生代构造话动与青藏高原西北缘的隆升[J]. 中国地质, 2006, 33(1): 41-47.

    Google Scholar

    [43] 于晓飞. 西昆仑造山带区域成矿规律研究[D]. 中国地质大学博士学位论文, 2008.

    Google Scholar

    [44] 李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京: 地质出版社, 2008: 1-5.

    Google Scholar

    [45] 伍耀中, 乔耿彪, 陈登辉, 等. 昆仑-阿尔金成矿带金属矿产成矿条件与成矿远景预测[M]. 武汉: 中国地质大学出版社, 2016: 14.

    Google Scholar

    [46] 计文化, 陈守建, 李荣社, 等. 青藏高原及邻区古生代构造-岩相古地理综合研究[M]. 武汉: 中国地质大学出版社, 2014: 112-116.

    Google Scholar

    [47] Gao S, Ling W, Qiu Y, et al. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2071-2088.

    Google Scholar

    [48] Sugisaki R, Yamamoto K, Adachi M. Triassic bedded cherts in central Japan are not pelagic[J]. Nature, 1982, 298(5875): 644-647. doi: 10.1038/298644a0

    CrossRef Google Scholar

    [49] Murray R W, Buchholtz T B, Marilyn R, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 1990, 18(3): 268. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2

    CrossRef Google Scholar

    [50] Brookins D G. Aqueous geochemistry of rare earth elements[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 201-225.

    Google Scholar

    [51] 刘平, 廖友常, 张雅静. 黔中-渝南石炭纪铝土矿含矿岩系中的海相沉积特征[J]. 中国地质, 2015, 42(2): 641-654 doi: 10.3969/j.issn.1000-3657.2015.02.022

    CrossRef Google Scholar

    [52] 刘长龄, 覃志安. 我国铝土矿中微量元素的地球化学特征[J]. 沉积学报, 1991, (2): 25-33.

    Google Scholar

    [53] 巴多西G. 等著, 顾皓民, 等译, 红土型铝土矿[M]. 沈阳: 辽宁科学技术出版社, 1993.

    Google Scholar

    [54] 张启明, 江新胜, 秦建华, 等. 黔北-渝南地区中二叠世早期梁山组的岩相古地理特征和铝土矿成矿效应[J]. 地质通报, 2012, 31(4): 558-568. doi: 10.3969/j.issn.1671-2552.2012.04.009

    CrossRef Google Scholar

    [55] 刘平, 廖友常. 黔中-渝南沉积型铝土矿区域成矿模式及找矿模型[J]. 中国地质, 2014, 41(6): 2063-2082. doi: 10.3969/j.issn.1000-3657.2014.06.020

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(581) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint