2021 Vol. 40, No. 6
Article Contents

QI Xin, LI Qinghua, ZHANG Zaitian, WANG Xiaohan, DAI Tao. Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County Hainan Province[J]. Geological Bulletin of China, 2021, 40(6): 1001-1009.
Citation: QI Xin, LI Qinghua, ZHANG Zaitian, WANG Xiaohan, DAI Tao. Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County Hainan Province[J]. Geological Bulletin of China, 2021, 40(6): 1001-1009.

Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County Hainan Province

More Information
  • Intrusive rocks, mainly granite and granodiorite, are widely distributed in Qiongzhong County of Hainan Province.They were emplaced in Cretaceous, Jurassic, Triassic, and Permian.It is difficult to find groundwater because of the relatively underdeveloped structure, good integrity and dense structure of rocks and various water richness of groundwater.Based on the mutual verification of geological survey, geophysical exploration and hydrologic drilling, this paper systematically analyzes the electrical characteristics and storage rules of three types of groundwater (structural fissure water, weathered crust netted fissure-pore water and contact bedrock fissure water) in granite area.The research results show that structural fissure water mainly exists in the structural fracture zone, especially in NW-trending tensional structural zones with good water richness and large water volume.The weathered crust netted fissure-pore water is widely distributed, mostly in the weathering crust of gully or mountain valley landform with poor water richness and low water volume.The contact type bedrock fissure water is mainly distributed in the contact zone of granite and sedimentary rocks, granite and metamorphic rocks, and sub-granite of different stages, and its water abundance is greatly different.On resistivity isopleth section, the structural fissure water of granite is electrically characterized by "stripe" and "funnel" abnormal curves with steeply decreasing resistance, and the electrical characteristics of granite weathered crust netted fissure-pore water by "lowland" and "groove" shape low resistance electrical characteristics, and contact bedrock fissure water by "layer" and "band" shape with low resistance.

  • 加载中
  • [1] 段佳松. 浅层地震折射波法配合电测深法在花岗岩地区找水[J]. 地质与勘探, 1999, (3): 46-48. doi: 10.3969/j.issn.0495-5331.1999.03.014

    CrossRef Google Scholar

    [2] 田蒲源, 朱庆俊. 综合物探在花岗岩严重缺水区地下水勘查中的应用[J]. 地下水, 2012, (3): 125-127.

    Google Scholar

    [3] 张先林, 许强, 彭大雷, 等. 高密度电法在黑方台地下水探测中的应用[J]. 地球物理学进展, 2017, 32(4): 1862-1867.

    Google Scholar

    [4] Schirov M, Legchenko A, Creer G. A new direct noninvasive groundwater detection technology for Australia[J]. Explor. Geophys., 1991, 22: 333-338. doi: 10.1071/EG991333

    CrossRef Google Scholar

    [5] Shen X, Liu L, Li P. Determining water well sites based on electrical structure in Taobei District of Baicheng[J]. Global Geology, 2020, 23(3): 173-179.

    Google Scholar

    [6] Naziya J, Singh N P. Identification of fracture zones for groundwater exploration using very low frequency electromagnetic (VLF-EM) and electrical resistivity (ER) methods in hard rock area of Sangod Block, Kota District, Rajasthan, India[J]. Groundwater for Sustainable Development, 2018, 7: 195-203. doi: 10.1016/j.gsd.2018.05.003

    CrossRef Google Scholar

    [7] 杨剑, 王永华, 焦彦杰, 等. EH4电磁系统在西南抗旱救灾找水中的应用[J]. 物探与化探, 2011, 35(6): 754-757.

    Google Scholar

    [8] 吴璐苹, 石昆法, 李荫槐, 等. 可控源音频大地电磁法在地下水勘查中的应用研究[J]. 地球物理学报, 1996, 39(5): 712-717. doi: 10.3321/j.issn:0001-5733.1996.05.015

    CrossRef Google Scholar

    [9] Chen J, Li Z, Tian B, et al. Using the CSAMT method to predict deep mineralisation of copper and molybdenum: a case study of the Zhongxingtun area in Inner Mongolia, China[J]. Exploration Geophysics, 2020, 51(2): 203-213. doi: 10.1080/08123985.2019.1669441

    CrossRef Google Scholar

    [10] 潘玉玲, 贺颢, 李振宇, 等. 地面核磁共振找水方法在中国的应用效果[J]. 地质通报, 2003, 22(2): 135-139. doi: 10.3969/j.issn.1671-2552.2003.02.009

    CrossRef Google Scholar

    [11] Pan Y, Jean B. Surface nuclear magnetic induction system and its' application in hydrogeological investigations[J]. Computerized Tomography Theory and Applications, 2000, 9(2): 37-43.

    Google Scholar

    [12] Legchenko A, Valla P. A review of the basic principles for proton magnetic resonance sounding measurements[J]. Journal of Applied Geophysics, 2002, 50(1): 3-20.

    Google Scholar

    [13] Wattanasen K, Elming S. Direct and indirect methods for groundwater investigations: a case study of MRS and VES in the southern part of Sweden[J]. J. Appl. Geophys., 2008, 66: 104-117. doi: 10.1016/j.jappgeo.2008.04.005

    CrossRef Google Scholar

    [14] 李慧杰, 朱庆俊, 李伟, 等. 山东临朐新生代玄武岩地下水赋存规律及电性特征[J]. 南水北调与水利科技, 2012, 10(6): 65-69.

    Google Scholar

    [15] 刘伟朋, 卢放, 韩振, 等. 阜平县太古界变质岩区地下水的赋存规律与电性特征[J]. 南水北调与水利科技, 2019, 17(6): 170-177.

    Google Scholar

    [16] 李巨芬, 李伟, 冯庆达, 等. 山东临朐盆地新构造运动特征及其对地下水的控制作用[J]. 水文地质工程地质, 2020, 47(1): 28-36.

    Google Scholar

    [17] 邓启军, 李伟, 朱庆俊, 等. 河北坝上张北县玄武岩区蓄水构造特征与找水实践[J]. 地质通报, 2020, 39(12): 1899-1907.

    Google Scholar

    [18] 黄道顺. 花岗岩裂隙水的赋存特征及找水要点[J]. 矿产保护与利用, 2005, 4: 51-54. doi: 10.3969/j.issn.1001-0076.2005.04.014

    CrossRef Google Scholar

    [19] 张彪, 刘良志, 倪进鑫, 等. 综合物探方法在花岗岩严重缺水地区找水勘查中的应用[J]. 工程地球物理学报, 2015, 12(4): 501-507. doi: 10.3969/j.issn.1672-7940.2015.04.015

    CrossRef Google Scholar

    [20] 李国占, 王璇. 综合物探在花岗岩地区找水应用效果[J]. 勘察科学技术, 2009, 4: 55-57.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(640) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint