2021 Vol. 40, No. 8
Article Contents

LIU Fei, LI Guanlong, BO Rongzhong, YANG Jingsui. Spreading ridge subduction of Bangong-Nujiang Ocean Evidence from geochemistry and Sr-Nd isotope of Middle Jurassic gabbro dikes in the Zongbai accretionary complex[J]. Geological Bulletin of China, 2021, 40(8): 1247-1264.
Citation: LIU Fei, LI Guanlong, BO Rongzhong, YANG Jingsui. Spreading ridge subduction of Bangong-Nujiang Ocean Evidence from geochemistry and Sr-Nd isotope of Middle Jurassic gabbro dikes in the Zongbai accretionary complex[J]. Geological Bulletin of China, 2021, 40(8): 1247-1264.

Spreading ridge subduction of Bangong-Nujiang Ocean Evidence from geochemistry and Sr-Nd isotope of Middle Jurassic gabbro dikes in the Zongbai accretionary complex

  • The Dingqing ophiolite, outcropped in the eastern segment of the Bangong-Nujiang suture zone, is divided into eastern part covering 400 km2 and western part covering 150 km2 by the Zongbai accretionary complex.The Zongbai accretionary complex is composed of the allogeneic Yazong mélange and the overlying autochthonous epicontinental clastic sedimentary rocks.The Yazong mélange consists of low metamorphic rock zone, conglomerate zone, basaltic tuff interlayered with thin layers of argillaceous siliceous rock, and argillaceous shale interbedded with thin layers of greywacke.The argillaceous rock is intruded by Middle Jurassic gabbro dikes with bilateral chill margins and striking 90°~110°.Compositions of major, rare earth and trace elements of all gabbro samples are between E-MORB and OIB.Combined with Nd isotope data of εNd(t) (1.88~2.41) and Sr data of (87Sr/86Sr) t(0.70912~0.70919), it is suggested that the gabbroic magmas are the product of the mixture of OIB-type melts rich in volatile and incompatible elements at the top of the seismic low-velocity zone(LVZ) and N-MORB-type melts originated from the lower part of LVZ.The gabbros were formed in a slab window setting during the interacting of the forearc spreading ridge within a subduction zone.

  • 加载中
  • [1] Mckenzie D P, Morgan W J. Evolution of TripleJunctions[J]. Nature, 1969, 224(5215): 125-133. doi: 10.1038/224125a0

    CrossRef Google Scholar

    [2] Palmer H. East Pacific Rise and Westward Drift of North America[J]. Nature, 1968, 220(5165): 341-345. doi: 10.1038/220341a0

    CrossRef Google Scholar

    [3] Thorkelson D J. Ridge Subduction and SlabWindows[C]//Alderton D, Elias S A. Encyclopedia of Geology(Second Edition). Oxford: Academic Press, 2021: 957-967.

    Google Scholar

    [4] 孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学: 地球科学, 2010, 40(2): 127-137. doi: 10.3969/j.issn.1000-3045.2010.02.002

    CrossRef Google Scholar

    [5] Cole R B, Stewart B W. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California[J]. Tectonophysics, 2009, 464(1/4): 118-136.

    Google Scholar

    [6] Li S, Wang Q, Zhu D, et al. Reconciling Orogenic Drivers for the Evolution of the Bangong-Nujiang Tethys During Middle-Late Jurassic[J]. Tectonics, 2020, 39(2): e2019T-e5951T.

    Google Scholar

    [7] Liu X, Xiao W, Xu J, et al. Geochemical signature and rock associations of ocean ridge-subduction: Evidence from the Karamaili Paleo-Asian ophiolite in east Junggar, NW China[J]. Gondwana Research, 2017, 48: 34-49. doi: 10.1016/j.gr.2017.03.010

    CrossRef Google Scholar

    [8] Madsen J K, Thorkelson D J, Friedman R M, et al. Cenozoic to Recent plate configurations in the Pacific Basin; ridge subduction and slab window magmatism in western North America[J]. Geological Society of America, 2006, 2: 11-34.

    Google Scholar

    [9] Thorkelson D J. Subduction of diverging plates and the principles of slab window formation[J]. Tectonophysics, 1996, 255(1/2): 47-63.

    Google Scholar

    [10] 沈晓明, 张海祥, 马林. 洋脊俯冲及其在新疆阿尔泰地区存在的可能证据[J]. 大地构造与成矿学, 2010, 34(2): 181-195. doi: 10.3969/j.issn.1001-1552.2010.02.004

    CrossRef Google Scholar

    [11] 马本俊, 吴时国, 范建柯. 板片窗构造研究综述[J]. 海洋地质前沿, 2015, 31(12): 1-10.

    Google Scholar

    [12] Fan J, Li C, Sun Z, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154: 187-201. doi: 10.1016/j.jseaes.2017.12.020

    CrossRef Google Scholar

    [13] 张丽鹏, 李贺, 王鲲. 板块俯冲与斑岩铜金成矿[J]. 岩石学报, 2020, 36(1): 113-124.

    Google Scholar

    [14] Sisson V B, Pavlis T L, Roeske S M, et al. Introduction: An overview of ridge-trench interactions in modern and ancient settings[C]//Sisson V B, Roeske S M, Pavlis T L, et al. Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Boulder, Colarado, Geological Society of America Special Paper, 2003, 371: 1-18.

    Google Scholar

    [15] Li S, Yin C, Guilmette C, et al. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet[J]. Earth-Science Reviews, 2019, 198: 102907. doi: 10.1016/j.earscirev.2019.102907

    CrossRef Google Scholar

    [16] Peng Y, Yu S, Li S, et al. The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture[J]. Earth-Science Reviews, 2020, 211: 103376. doi: 10.1016/j.earscirev.2020.103376

    CrossRef Google Scholar

    [17] 刘飞, 杨经绥, 连东洋, 等. 青藏高原新特提斯蛇绿岩的地质特征及其构造演化[J]. 岩石学报, 2020, 36(10): 2913-2945.

    Google Scholar

    [18] Kapp P, Decelles P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. doi: 10.2475/03.2019.01

    CrossRef Google Scholar

    [19] 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 1-42.

    Google Scholar

    [20] Xu Z, Dilek Y, Cao H, et al. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and WestCathaysides[J]. Journal of Asian Earth Sciences, 2015, 105: 320-337. doi: 10.1016/j.jseaes.2015.01.021

    CrossRef Google Scholar

    [21] Bai W, Zhou M, Robinson P T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 1993, 30(8): 1650-1659. doi: 10.1139/e93-143

    CrossRef Google Scholar

    [22] Wang W, Wang M, Zhai Q, et al. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet[J]. Gondwana Research, 2020, 78: 77-91. doi: 10.1016/j.gr.2019.09.008

    CrossRef Google Scholar

    [23] 陈言飞. 青藏高原东南部(昌都-察隅) 早中生代岩浆-变质作用及构造意义[D]. 中国地质大学(北京) 博士学位论文, 2019.

    Google Scholar

    [24] Peng Y, Yu S, Li S, et al. Early Jurassic and Late Cretaceous granites in the Tongka micro-block, Central Tibet: Implications for the evolution of the Bangong-Nujiang ocean[J]. Journal of Asian Earth Sciences, 2020, 194: 104030. doi: 10.1016/j.jseaes.2019.104030

    CrossRef Google Scholar

    [25] 郑一义. 西藏丁青地区蛇绿岩-混杂岩的发现[C]//青藏高原地质文集(13). 北京: 地质出版社, 1983: 177-189.

    Google Scholar

    [26] 王玉净, 王建平, 刘彦明, 等. 西藏丁青蛇绿岩特征、时代及其地质意义[J]. 微体古生物学报, 2002, (4): 417-420. doi: 10.3969/j.issn.1000-0674.2002.04.009

    CrossRef Google Scholar

    [27] 李观龙, 杨经绥, 薄容众, 等. 西藏班公湖-怒江缝合带东段丁青蛇绿岩中的铬铁矿: 产出特征与类型[J]. 中国地质, 2019, 46(1): 1-20.

    Google Scholar

    [28] 李达周, 张旗, 张魁武. 西藏丁青地区与玻镁安山岩类有关的蛇绿岩的矿物学特征[J]. 岩石矿物学杂志, 1988, (3): 235-243.

    Google Scholar

    [29] 张旗. 丁青蛇绿岩新知[J]. 地质科学, 1983, 18(1): 101-102.

    Google Scholar

    [30] 邹光富. 西藏丁青蛇绿岩岩石地球化学特征及其成因意义[J]. 西藏地质, 1993, 10(2): 46-58.

    Google Scholar

    [31] 张旗, 杨瑞英. 西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J]. 科学通报, 1985, (16): 1243-1245.

    Google Scholar

    [32] 刘文斌, 钱青, 岳国利, 等. 西藏丁青弧前蛇绿岩的地球化学特征[J]. 岩石学报, 2002, 18(3): 392-400.

    Google Scholar

    [33] 林靓. 西藏丁青蛇绿岩的形成时代与岩石地球化学特征[D]. 中国科学院大学硕士学位论文, 2015.

    Google Scholar

    [34] 李观龙. 班公湖-怒江缝合带东段丁青蛇绿岩地幔橄榄岩和铬铁矿特征[D]. 中国地质大学(北京) 硕士学位论文, 2019.

    Google Scholar

    [35] 强巴扎西, 谢尧武, 吴彦旺, 等. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J]. 地质通报, 2009, 28(9): 1253-1258.

    Google Scholar

    [36] Wang B, Wang L, Chung S, et al. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245: 18-33. doi: 10.1016/j.lithos.2015.07.016

    CrossRef Google Scholar

    [37] 李小波. 班公湖-怒江结合带安多-丁青蛇绿岩地球化学特征及构造演化研究[D]. 中国地质大学(北京) 硕士学位论文, 2016.

    Google Scholar

    [38] 王玉净, 王建平, 裴放. 西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群[J]. 微体古生物学报, 2002, (4): 323-336. doi: 10.3969/j.issn.1000-0674.2002.04.001

    CrossRef Google Scholar

    [39] 王建平, 刘彦明, 李秋生, 等. 西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J]. 地质通报, 2002, 21(7): 405-410.

    Google Scholar

    [40] Raymond L A. Perspectives on the roles of melanges in subduction accretionary complexes: A review[J]. Gondwana Research, 2019, 74: 68-89. doi: 10.1016/j.gr.2019.03.005

    CrossRef Google Scholar

    [41] 闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37(2/3): 167-191.

    Google Scholar

    [42] 闫臻, 付长垒, 张继恩, 等. 混杂岩地质调查与填图方法[M]. 北京: 地质出版社, 2020: 1-80.

    Google Scholar

    [43] 韦振权, 夏斌, 周国庆, 等. 西藏丁青宗白蛇绿混杂岩地球化学特征及其洋中脊叠加洋岛的成因[J]. 地质论评, 2007, (2): 187-197. doi: 10.3321/j.issn:0371-5736.2007.02.006

    CrossRef Google Scholar

    [44] 薄容众, 杨经绥, 李观龙, 等. 班怒带东段丁青蛇绿岩中镁铁质岩石年代学及构造背景[J]. 地质学报, 2019, 93(10): 2617-2638. doi: 10.3969/j.issn.0001-5717.2019.10.015

    CrossRef Google Scholar

    [45] Mattinson J M, Echeverria L M. Ortigalita Peak gabbro, Franciscan Complex: U-Pb dates of intrusion and high-pressure-low-temperature metamorphism[J]. Geology, 1980, 8(12): 589-593. doi: 10.1130/0091-7613(1980)8<589:OPGFCU>2.0.CO;2

    CrossRef Google Scholar

    [46] 曾敏, 陈建平, 位冲冲. 木嘎岗日岩群是羌塘南缘的增生楔杂岩[J]. 地学前缘, 2017, 24(5): 207-217.

    Google Scholar

    [47] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobileelements[J]. Chemical geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [48] Le Maitre R W, Streckeisen A, Zanettin B, et al. Igneous Rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. New York: Cambridge University Press, 2002: 1-236.

    Google Scholar

    [49] Liu F, Yang J, Dilek Y, et al. Geochronology and geochemistry of basaltic lavas in the Dongbo andPurang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet[J]. Gondwana Research, 2015, 27(2): 701-718. doi: 10.1016/j.gr.2014.08.002

    CrossRef Google Scholar

    [50] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition andprocesses[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [51] 刘飞, 杨经绥, 陈松永, 等. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征: 新特提斯洋内俯冲的证据[J]. 中国地质, 2013, 40(3): 361-374.

    Google Scholar

    [52] Saccani E. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics[J]. Geoscience Frontiers, 2015, 6(4): 481-501. doi: 10.1016/j.gsf.2014.03.006

    CrossRef Google Scholar

    [53] Li C, Arndt N T, Tang Q, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83. doi: 10.1016/j.lithos.2015.06.022

    CrossRef Google Scholar

    [54] Xia L, Li X. Basalt geochemistry as a diagnostic indicator of tectonic setting[J]. Gondwana Research, 2019, 65: 43-67. doi: 10.1016/j.gr.2018.08.006

    CrossRef Google Scholar

    [55] 杨婧, 王金荣, 张旗, 等. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J]. 地质通报, 2016, 35(12): 1937-1949.

    Google Scholar

    [56] 刘飞, 连东洋, 牛晓露, 等. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因[J]. 地球科学, 2018, 43(4): 952-974.

    Google Scholar

    [57] Pearce J A. Supra-subduction zone ophiolites: The search for modernanalogues[J]. Special Papers-Geological Society of America, 2003: 269-294.

    Google Scholar

    [58] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic calssification adn to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and planetary science letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [59] Condie K C. Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates withtime[J]. Geochemistry Geophysics Geosystems, 2013, 4(1): 1-28.

    Google Scholar

    [60] Saccani E, Allahyari K, Beccaluva L, et al. Geochemistry and petrology of the Kermanshah ophiolites(Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean[J]. Gondwana Research, 2013, 24: 392-411. doi: 10.1016/j.gr.2012.10.009

    CrossRef Google Scholar

    [61] An A, Choi S H, Yu Y, et al. Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam[J]. Lithos, 2017, 272/273: 192-204. doi: 10.1016/j.lithos.2016.12.008

    CrossRef Google Scholar

    [62] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.

    Google Scholar

    [63] 冯光英, 刘燊, 冯彩霞, 等. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报, 2011, (6): 1594-1606.

    Google Scholar

    [64] Chauvet F, Lapierre H, Maury R C, et al. Triassic alkaline magmatism of the Hawasina Nappes: Post-breakup melting of the Oman lithospheric mantle modified by the Permian Neotethyan Plume[J]. Lithos, 2011, 122(1/2): 122-136.

    Google Scholar

    [65] Gamal El Dien H, Doucet L S, Li Z, et al. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle[J]. Nature Communications, 2019, 10(1): 5270. doi: 10.1038/s41467-019-13300-4

    CrossRef Google Scholar

    [66] 牛耀龄. 板内洋岛玄武岩(OIB) 成因的一些基本概念和存在的问题[J]. 科学通报, 2010, (2): 103-114.

    Google Scholar

    [67] 牛耀龄. 全国构造与地球动力学-岩石学与地球动力学方法应用实例[J]. 北京: 科学出版社. 2013: 1-307.

    Google Scholar

    [68] Xu W, Li C, Wang M, et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet[J]. Gondwana Research, 2017, 41: 128-141. doi: 10.1016/j.gr.2015.09.010

    CrossRef Google Scholar

    [69] 吴建亮, 尹显科, 刘文, 等. 西藏班公湖-怒江缝合带西段野马去申拉组富Nb火山岩的发现及其指示意义[J]. 地质通报, 2019, 38(4): 5-17.

    Google Scholar

    [70] Wei S, Tang J, Song Y, et al. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane[J]. Journal of Asian Earth Sciences, 2017, 138: 588-607. doi: 10.1016/j.jseaes.2016.12.010

    CrossRef Google Scholar

    [71] Xu W, Li C, Xu M J, et al. Petrology, geochemistry, and geochronology of boninitic dikes from the Kangqiong ophiolite: implications for the Early Cretaceous evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet[J]. International Geology Review, 2015, 57(16): 2028-2043. doi: 10.1080/00206814.2015.1050464

    CrossRef Google Scholar

    [72] Shi R, Yang J, Xu Z, et al. Discovery of the boninite series volcanic rocks in the Bangong Lake ophiolite mélange, western Tibet, and its tectonici mplications[J]. Chinese Science Bulletin, 2004, 12: 1272-1278.

    Google Scholar

    [73] Yang Z, Wang Q, Hao L, et al. Subduction erosion and crustal material recycling indicatedby adakites in central Tibet[J]. Geology, 2021. https://doi.org/10.1130/G48486.1 doi: 10.1130/G48486.1

    CrossRef Google Scholar

    [74] Li H, Wang M, Zeng X, et al. Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet: Products of intra-oceanic subduction of the Meso-Tethys Ocean[J]. Lithos, 2020, 362/363: 105481. doi: 10.1016/j.lithos.2020.105481

    CrossRef Google Scholar

    [75] Ma Y, Zhong Y, Furnes H, et al. Origin and tectonic implications of boninite dikes in the Shiquanhe ophiolite, western Bangong Suture, Tibet[J]. Journal of Asian Earth Sciences, 2021, 205: 104594. doi: 10.1016/j.jseaes.2020.104594

    CrossRef Google Scholar

    [76] Ducea M N, Saleeby J B, Bergantz G. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 299-331. doi: 10.1146/annurev-earth-060614-105049

    CrossRef Google Scholar

    [77] 肖文交, 李继亮, 宋东方, 等. 增生型造山带结构解析与时空制约[J]. 地球科学, 2019, 44(5): 1661-1687.

    Google Scholar

    [78] Dilek Y, Furnes H. Tethyan ophiolites and Tethyanseaways[J]. Journal of the Geological Society, 2019, 176(5): 899-912. doi: 10.1144/jgs2019-129

    CrossRef Google Scholar

    [79] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674.

    Google Scholar

    [80] Liu T, Zhai Q, Wang J, et al. Tectonic significance of the Dongqiao ophiolite in the north-central Tibetan plateau: Evidence from zircon dating, petrological, geochemical and Sr-Nd-Hf isotopic characterization[J]. Journal of Asian Earth Sciences, 2016, 116: 139-154. doi: 10.1016/j.jseaes.2015.11.014

    CrossRef Google Scholar

    [81] Yan L, Zhang K. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, central Tibet, western China[J]. Gondwana Research, 2020, 79: 110-124. doi: 10.1016/j.gr.2019.08.008

    CrossRef Google Scholar

    [82] 徐建鑫, 李才, 范建军, 等. 西藏改则县拉果错蛇绿岩构造属性: 来自岩石学、地球化学、年代学及Lu-Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1541-1553.

    Google Scholar

    [83] Zeng X, Wang M, Li C, et al. Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean[J]. Geoscience Frontiers, 2021, 12(4): 101127. doi: 10.1016/j.gsf.2020.12.008

    CrossRef Google Scholar

    [84] Xu M, Li C, Zhang X, et al. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology[J]. International Geology Review, 2014, 9(56): 1072-1096.

    Google Scholar

    [85] 刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4): 824-838.

    Google Scholar

    [86] Zhu D, Li S, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [87] Lai W, Hu X, Zhu D, et al. Discovery of the early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean?[J]. International Journal of Earth Sciences, 2017, 106(4): 1277-1288. doi: 10.1007/s00531-016-1405-1

    CrossRef Google Scholar

    [88] Tang Y, Zhai Q, Hu P, et al. Southward subduction of the Bangong-Nujiang Tethys Ocean: insights from ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet[J]. International Journal of Earth Sciences, 2020, 109(2): 631-647. doi: 10.1007/s00531-020-01823-x

    CrossRef Google Scholar

    [89] 曲晓明, 王瑞江, 辛洪波, 等. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J]. 地球化学, 2009, 38(6): 523-535. doi: 10.3321/j.issn:0379-1726.2009.06.002

    CrossRef Google Scholar

    [90] Fan J, Li C, Sun Z, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet: Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154: 187-201. doi: 10.1016/j.jseaes.2017.12.020

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1262) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint