2021 Vol. 40, No. 8
Article Contents

YANG Shengbiao, YANG Jingsui, LI Yuan, BO Rongzhong, ZHANG Jian, LI Ruibao, LIU Chengjun, LIU Fei, XIONG Fahui, CHEN Xiaojian. Late Jurassic magmatism in the Neo-Tethys Ocean: Evidence from zircon U-Pb ages and geochemistry of dolerites in the Bainang Terrane, southern Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1231-1246.
Citation: YANG Shengbiao, YANG Jingsui, LI Yuan, BO Rongzhong, ZHANG Jian, LI Ruibao, LIU Chengjun, LIU Fei, XIONG Fahui, CHEN Xiaojian. Late Jurassic magmatism in the Neo-Tethys Ocean: Evidence from zircon U-Pb ages and geochemistry of dolerites in the Bainang Terrane, southern Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1231-1246.

Late Jurassic magmatism in the Neo-Tethys Ocean: Evidence from zircon U-Pb ages and geochemistry of dolerites in the Bainang Terrane, southern Tibet

More Information
  • The Yarlung Zangbo suture zone(YZSZ) in southern Tibet marks the collision between the Eurasia plate and the Indian subcontinent, and the tectonic affinity of the ocean island-type(OIB-type) basaltic rocks within this suture remains controversial.The Bainang terrane in the middle segment of the YZSZ is a NE-SW-oriented tectonic slice, which is composed of radiolarian chert, siliceous mudstone, siliceous mudstone, shale, tuff, micritic limestone, basalt, dolerite and gabbro.The dolerite and gabbro are dikes or sills intruding into strata.The dolerites formed in the Late Jurassic, with a concordant zircon 206Pb/238U age of 150.3±0.8 Ma(n=39, MSWD=1.8).They are chemically characterized by LREE enrichment, variable enrichment of large ion lithophile elements(LILEs, e.g.Rb, Sr and Pb) and high field strength elements(HFSEs, Th, Nb, Ta, Zr, Hf, and Ti), indicating OIB affinity with little or no continental crust contamination.These features are similar to Late Jurassic-Early Cretaceous OIB in the YZSZ.It is suggested that these OIB rocks were derived from the intraplate environment within the Neo-Tethys and represented the remnants of seamounts.In combination with regional geological material, it is proposed that the Jurassic mantle plume in Neo-Tethys might drive the oceanic lithosphere northward subduction under the Lhasa terrane, and formed the Andean continental margin.During the Early Cretaceous, the Neo-Tethys oceanic lithosphere was decoupled from the overlying plate, and retreated southward to induce the Gangdese forearc extension to form the present ophiolites preserved in the YZSZ.

  • 加载中
  • [1] Isozaki Y, Maruyama S, Furuoka F. Accreted Oceanic Materials in Japan[J]. Tectonophysics, 1990, 181: 179-205. doi: 10.1016/0040-1951(90)90016-2

    CrossRef Google Scholar

    [2] Wakita K, Metcalfe I. Ocean plate stratigraphy in East and Southeast Asia[J]. Journal of Asia Earth Sciences, 2005, 24: 679-702. doi: 10.1016/j.jseaes.2004.04.004

    CrossRef Google Scholar

    [3] 付长垒, 闫臻, 王秉璋, 等. 造山带中古海山残片的识别——以拉脊山缝合带青沙山和东沟地质填图为例[J]. 地质通报, 2021, 40(1): 31-40.

    Google Scholar

    [4] Safonova I, Maruyama S, Kojima S, et al. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry[J]. Gondwana Research, 2016, 33: 92-114. doi: 10.1016/j.gr.2015.06.013

    CrossRef Google Scholar

    [5] 闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37(2/3): 167-191.

    Google Scholar

    [6] 张克信, 李仰春, 王丽君, 等. 造山带混杂岩及相关术语[J]. 地质通报, 2020, 39(6): 765-782.

    Google Scholar

    [7] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Ann. Rev. Earth Planet., 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [8] Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2): 377-397. doi: 10.1016/j.gr.2011.10.013

    CrossRef Google Scholar

    [9] Wang J G, Wu F Y, Garzanti E, et al. Upper Triassic turbidites of the northern Tethyan Himalaya(Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen[J]. Gondwana Research, 2016, 34: 84-98. doi: 10.1016/j.gr.2016.03.005

    CrossRef Google Scholar

    [10] Liu Y M, Dai J G, Wang C S, et al. Provenance and tectonic setting of Upper Triassic turbidites in the eastern Tethyan Himalaya: Implications for early-stage evolution of the Neo-Tethys[J]. Earth-Science Reviews, 2020, 200: 103030(1-17). DOI: 10.1016/j.earscirev.2019.103030

    CrossRef Google Scholar

    [11] Liu F, Yang J S, Dilek Y, et al. Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet[J]. Gondwana Research, 2015, 27(2): 701-718. doi: 10.1016/j.gr.2014.08.002

    CrossRef Google Scholar

    [12] Wang H Q, Ding L, Cai F L, et al. The latest Jurassic protoliths of the Sangsang mafic schists in southern Tibet: Implications for the spatial extent of Greater India[J]. Gondwana Research, 2020, 79: 248-262. doi: 10.1016/j.gr.2019.10.008

    CrossRef Google Scholar

    [13] Zheng H, Huang Q T, Kapsiotis A, et al. Coexistence of MORB-and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle[J]. GSA Bulletin, 2019;131(7/8): 1276-1294.

    Google Scholar

    [14] Yang G X, Dilek Y. OIB-and P-type ophiolites along the Yarlung-Zangbo Suture Zone(YZSZ), Southern Tibet: Poly-Phase melt history and mantle sources of the Neotethyan oceanic lithosphere[J]. Episodes, 2015, 38: 250-265. doi: 10.18814/epiiugs/2015/v38i4/82420

    CrossRef Google Scholar

    [15] Xia B, Chen G W, Wang R, et al. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 396-405. doi: 10.1016/j.jseaes.2007.11.008

    CrossRef Google Scholar

    [16] 王冉, 夏斌, 胡敬仁, 等. 仁布蛇绿混杂带洋岛型辉绿岩地球化学: 藏南特提斯洋内热点[J]. 地球化学, 2006, 35(1): 41-54. doi: 10.3321/j.issn:0379-1726.2006.01.006

    CrossRef Google Scholar

    [17] Dai J G, Wang C S, Li Y L. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2012, 53: 25-37. doi: 10.1016/j.jseaes.2011.12.024

    CrossRef Google Scholar

    [18] He J, Li Y L, Wang C S, et al. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet[J]. Journal of Asian Earth Sciences, 2016, 121: 34-55. doi: 10.1016/j.jseaes.2016.01.022

    CrossRef Google Scholar

    [19] Xiong F H, Meng Y K, Yang J S, et al. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet[J]. Geoscience Frontiers, 2020, 11(1): 276-291.

    Google Scholar

    [20] 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世-早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2): 225-237.

    Google Scholar

    [21] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [22] 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674.

    Google Scholar

    [23] Ma X X, Xu Z Q, Zhao Z B, et al. Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Hima-laya, southern Tibet[J]. Geosphere, 2020, 16: 407-434. doi: 10.1130/GES02154.1

    CrossRef Google Scholar

    [24] Metcalf K, Kapp P. History of subduction erosion and accretion recorded in the Yarlung Suture Zone, southern Tibet[J]. Geological Society London Special Publications, 2019, 483: 517-554. doi: 10.1144/SP483.12

    CrossRef Google Scholar

    [25] Ziabrev S V, Aitchison J C, Abrajevitch A V, et al. Bainang Terrane, Yarlung-Tsangpo suture, southern Tibet(Xizang, China): a record of intra-Neotethyan subduction-accretion processes preserved on the roof of the world[J]. Journal of the Geological Society, 2004, 161(3): 523-539. doi: 10.1144/0016-764903-099

    CrossRef Google Scholar

    [26] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.

    Google Scholar

    [27] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    Google Scholar

    [28] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [29] 李怀坤, 朱士兴, 相振群, 等. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 2010, 26(7): 2131-2140.

    Google Scholar

    [30] Raczek I, Stoll B, Hofmann A W, et al. High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS[J]. Geostandards and Geoanalytical Research, 2001, 25(1): 77-86. doi: 10.1111/j.1751-908X.2001.tb00789.x

    CrossRef Google Scholar

    [31] 张万平, 莫宣学, 朱弟成, 等. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学[J]. 成都理工大学学报(自然科学版), 2011, 38(5): 538-548. doi: 10.3969/j.issn.1671-9727.2011.05.010

    CrossRef Google Scholar

    [32] Tatsumi Y, Eggins S. Subduction zone magmatism[M]. Oxford: Blackwell Science, 1995: 1-95.

    Google Scholar

    [33] Wilson M. Igneous Petrogenesis[M]. London: Unwin Hyman. 1989.

    Google Scholar

    [34] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [35] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [36] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and source processes[J]. Geological Society of London, Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [37] Hofmann A W. Mantle geochemistry: The message from oceanic volcanism[J]. Nature, 1997, 385(6613): 218-229. doi: 10.1038/385218a0

    CrossRef Google Scholar

    [38] Zhu D C, Mo X X, Pan G T, et al. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?[J]. Lithos, 2008, 100(1/4): 147-173.

    Google Scholar

    [39] Belay I G, Tanaka R, Kitagawa H, et al. Origin of ocean island basalts in the West African passive margin without mantle plume involvement[J]. Nature Communications, 2019, 10: 1-12. doi: 10.1038/s41467-018-07882-8

    CrossRef Google Scholar

    [40] Conrad C P, Wu B, Smith E I, et al. Shear-driven upwelling induced by lateral viscosity variations and asthenospheric shear: A mechanism for intraplate volcanism[J]. Physics of the Earth & Planetary Interiors, 2010, 178(3/4): 162-175.

    Google Scholar

    [41] Foulger G R, Natland J H. Is "hotspot" volcanism a consequence of plate tectonics?[J]. Science, 2003, 300: 921-922. doi: 10.1126/science.1083376

    CrossRef Google Scholar

    [42] Humphreys E R, Niu Y L. On the composition of ocean island basalts(OIB): The effects of lithospheric thickness variation and mantle metasomatism[J]. Lithos, 2009, 112(1/2): 118-136.

    Google Scholar

    [43] Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth & Planetary Science Letters, 1981, 53(2): 189-202.

    Google Scholar

    [44] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise Geochem., 2003, 3: 1-64.

    Google Scholar

    [45] Wang B, Xie C M, Fan J J, et al. Genesis and tectonic setting of Middle Permian OIB-type mafic rocks in the Sumdo area, southern Lhasa terrane[J]. Lithos, 2019, 324/325: 429-438.

    Google Scholar

    [46] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102: 67-95. doi: 10.1016/S0377-0273(00)00182-7

    CrossRef Google Scholar

    [47] Mckenzie D, O'Nions R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32(6): 1453-1453.

    Google Scholar

    [48] Saccani E, Allahyari K, Beccaluva L, et al. Geochemistry and petrology of the Kermanshah ophiolites(Iran): Implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean[J]. Gondwana Research, 2013, 24(1): 392-411. doi: 10.1016/j.gr.2012.10.009

    CrossRef Google Scholar

    [49] Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle(DMM)[J]. Earth & Planetary Science Letters, 2005, 231(1/2): 53-72.

    Google Scholar

    [50] Davidson J, Turner S, Plank T. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes[J]. Journal of Petrology, 2013, 54(3): 525-537. doi: 10.1093/petrology/egs076

    CrossRef Google Scholar

    [51] Pearce J A, Ernst R E, Peate D W, et al. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record[J]. Lithos, 2021: 106068.

    Google Scholar

    [52] Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1): 244-256.

    Google Scholar

    [53] 赵慧, 杨经绥, 刘飞, 等. 西藏雅鲁藏布江缝合带萨嘎碱性玄武岩地球化学和年代学研究[J]. 中国地质, 2015, 42(5): 1242-1256. doi: 10.3969/j.issn.1000-3657.2015.05.006

    CrossRef Google Scholar

    [54] Ji W Q, Wu F Y, Chung S L, et al. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet[J]. Geology, 2016, 44: 283-286. doi: 10.1130/G37612.1

    CrossRef Google Scholar

    [55] Liu F, Dilek Y, Yang J S, et al. A middle Triassic seamount within the western Yarlung Zangbo suture zone, Tibet: The earliest seafloor spreading record of Neotethys to the North of East Gondwana[J]. Lithos, 2021, 388/389: 106062. doi: 10.1016/j.lithos.2021.106062

    CrossRef Google Scholar

    [56] 范建军, 李才, 牛耀龄, 等. 造山带板内洋岛-海山残片的识别及地质意义[J]. 地球科学, 2021, 46(2): 381-404.

    Google Scholar

    [57] Metcalfe I. Multiple Tethyan Ocean basins and orogenic belts in Asia[J]. Gondwana Research, 2021, https://doi.org/10.1016/j.gr.2021.01.012. doi: 10.1016/j.gr.2021.01.012

    CrossRef Google Scholar

    [58] Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. doi: 10.1130/G31895.1

    CrossRef Google Scholar

    [59] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    [60] Chatterjee S, Goswami A, Scotese C R. The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Research, 2013, 23: 238-267. doi: 10.1016/j.gr.2012.07.001

    CrossRef Google Scholar

    [61] Zhang K J, Zhang, Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews, 2012, 114: 236-249. doi: 10.1016/j.earscirev.2012.06.001

    CrossRef Google Scholar

    [62] Xiong Q, Griffin W L, Zheng J P, et al. Southward trench migration at~130-120 Ma caused accretion of the NeoTethyan forearc lithosphere in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 2016, 438: 57-65. doi: 10.1016/j.epsl.2016.01.014

    CrossRef Google Scholar

    [63] Wang C S, Li X H, Liu Z F, et al. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone[J]. Gondwana Research, 2012, 22: 415-433. doi: 10.1016/j.gr.2011.09.014

    CrossRef Google Scholar

    [64] 杨胜标, 李源, 杨经绥, 等. 西藏日喀则白马让蛇绿岩: 亚洲大陆边缘的小洋盆[J]. 岩石学报, 2017, 33(12): 3766-3782.

    Google Scholar

    [65] Wang J G, Hu X M, Garzanti E, et al. The birth of the Xigaze forearc basin in southern Tibet[J]. Earth and Planetary Science Letters, 2017, 465: 38-47. doi: 10.1016/j.epsl.2017.02.036

    CrossRef Google Scholar

    [66] Maffione M, van Hinsbergen D J J, Koornneef L M T, et al. Forearc hyperextension dismembered the south Tibetan ophiolites[J]. Geology, 2015, 43: 475-478. doi: 10.1130/G36472.1

    CrossRef Google Scholar

    [67] Butler J P, Beaumont C. Subduction zone decoupling/retreat modeling explains south Tibet(Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 2017, 463: 101-117. doi: 10.1016/j.epsl.2017.01.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(2693) PDF downloads(14) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint