2021 Vol. 40, No. 8
Article Contents

TANG Yue, ZHAI Qingguo, HU Peiyuan, WANG Wei. Petrogenesis of anorthosite in the Laguoco ophiolite western part of the Bangong-Nujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean[J]. Geological Bulletin of China, 2021, 40(8): 1265-1278.
Citation: TANG Yue, ZHAI Qingguo, HU Peiyuan, WANG Wei. Petrogenesis of anorthosite in the Laguoco ophiolite western part of the Bangong-Nujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean[J]. Geological Bulletin of China, 2021, 40(8): 1265-1278.

Petrogenesis of anorthosite in the Laguoco ophiolite western part of the Bangong-Nujiang suture zone and its constraint to the evolution of the Meso-Tethys Ocean

More Information
  • The Laguoco ophiolite is distributed in the Gaize area, north Tibetan plateau, and is one of the most complete and well-preserved ophiolites in the Shiquanhe-Yongzhu belt. The petrological, zircon U-Pb geochronology and geochemistry of anorthosite intruding gabbros are studied to manifest the genesis and tectonic affinities of the Laguoco ophiolite. The anorthosite was emplaced within gabbros mainly as irregular dikes or lenses, with zircon U-Pb ages of 162±1 Ma, slightly later than mafic rocks of the ophiolite. All zircons yield remarkable positive εHf(t) values (+15.8~+19.7), indicating that the magma was derived from a long-term depleted mantle source. All anorthosites are characterized by low SiO2, TiO2 and high CaO contents, MORB-like REE patterns with low trace element concentrations, enrichment of Rb, Ba, Th and Sr, and depletion of Nb, Ta and Zr. Moreover, these samples show high Nb/La but low Th/Nb and Ba/Nb ratios, which suggests their magma was affected by enriched mantle with variable inputting of subduction materials. The comprehensive analysis suggests that the Laguoco anorthosite was derived from high degree partial melting of depleted mantle source with re-enrichment of plume. The primary magma deriving from (enriched) mantle wedge rapidly ascended into oceanic crust in company with the crystallization differentiation of Mg-Fe oxides. Then, residual Ca, Al-bearing magma injected into the gabbros and formed anorthosite with the decrease of pressure. Combining with regional geology, it is suggested that the Laguoco ophiolite was formed in a subduction-related setting during the Jurassic.

  • 加载中
  • [1] Coleman R G. Ophiolite[M]. New York: Springer Verlag, 1977: 1-220.

    Google Scholar

    [2] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94. doi: 10.1144/GSL.SP.1984.016.01.06

    CrossRef Google Scholar

    [3] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123(3/4): 387-411.

    Google Scholar

    [4] Yang J S, Wu W W, Lian D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 16: 1-5.

    Google Scholar

    [5] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [6] Kapp P, Yin A, Manning C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 1043.

    Google Scholar

    [7] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [8] Guynn J H, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34(6): 505-508. doi: 10.1130/G22453.1

    CrossRef Google Scholar

    [9] Li S M, Wang Q, Zhu D C, et al. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic[J]. Tectonics, 2020, 39(2): e2019TC005951.

    Google Scholar

    [10] Tang Y, Zhai Q G, Chung S L, et al. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau[J]. Geological Society of America Bulletin, 2020, 132(9/10): 2202-2220.

    Google Scholar

    [11] Fan J J, Niu Y, Liu Y M, et al. Timing of closure of the Meso-Tethys Ocean: Constraints from remnants of a 141-135 Ma ocean island within the Bangong-Nujiang Suture Zone, Tibetan Plateau[J]. Geological Society of America Bulletin, 2021, https://doi.org/10.1130/B35896.1. doi: 10.1130/B35896.1

    CrossRef Google Scholar

    [12] 刘海永, 曾庆高, 旺姆, 等. 班公湖-怒江缝合带西段聂尔错-拉果错地区火山岩锆石U-Pb年龄及其地球化学特征[J]. 地质通报, 2019, 38(7): 1136-1145.

    Google Scholar

    [13] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.

    Google Scholar

    [14] 王保弟, 许继峰, 曾庆高, 等. 西藏改则地区拉果错蛇绿岩地球化学特征及成因[J]. 岩石学报, 2007, 23(6): 1521-1530. doi: 10.3969/j.issn.1000-0569.2007.06.026

    CrossRef Google Scholar

    [15] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [16] Girardeau J, Marcoux J, Alleger C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307(5): 27-31.

    Google Scholar

    [17] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.

    Google Scholar

    [18] Xu M J, Li C, Zhang X Z, et al. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology[J]. International Geology Review, 2014, 56(9): 1072-1096. doi: 10.1080/00206814.2014.919616

    CrossRef Google Scholar

    [19] Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300: 250-260.

    Google Scholar

    [20] 张玉修, 张开均, 黎兵, 等. 西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究[J]. 科学通报, 2007, 52(5): 100-106.

    Google Scholar

    [21] Wang W L, Aitchison J C, Lo C H, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet[J]. Journal of Asian Earth Sciences, 2008, 33: 122-138. doi: 10.1016/j.jseaes.2007.10.022

    CrossRef Google Scholar

    [22] Zeng X W, Wang M, Li C, et al. Lower Cretaceous turbidites in the Shiquanhe-Namco Ophiolite Mélange Zone, Asa area, Tibet: Constraints on the evolution of the Meso-Tethys Ocean[J]. Geoscience Frontiers, 2021, 12(4): 101127. doi: 10.1016/j.gsf.2020.12.008

    CrossRef Google Scholar

    [23] Yuan Y J, Yin Z X, Liu W L, et al. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone: Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite[J]. Acta Geologica Sinica, 2015, 89(2): 369-388. doi: 10.1111/1755-6724.12436

    CrossRef Google Scholar

    [24] 徐建鑫, 李才, 范建军, 等. 西藏改则县拉果错蛇绿岩构造属性: 来自岩石学, 地球化学, 年代学及Lu-Hf同位素的制约[J]. 地质通报, 2018, 37(8): 1541-1553.

    Google Scholar

    [25] 刘海永, 曾庆高, 王雨, 等. 西藏拉果错蛇绿混杂岩岩石学, 锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2/3): 164-76.

    Google Scholar

    [26] Qian Q, Hermann J, Dong F, et al. Episodic formation of Neotethyan ophiolites(Tibetan plateau): Snapshots of abrupt global plate reorganizations during major episodes of supercontinent breakup?[J]. Earth-Science Reviews, 2020, 203: 103144. doi: 10.1016/j.earscirev.2020.103144

    CrossRef Google Scholar

    [27] 王希斌, 鲍佩声, 邓万明, 等. 西藏蛇绿岩[M]. 北京: 地质出版社, 1987: 138-214.

    Google Scholar

    [28] 李观龙, 杨经绥, 薄容众, 等. 西藏班公湖-怒江缝合带东段丁青蛇绿岩中的铬铁矿: 产出特征与类型[J]. 中国地质, 2019, 46(1): 1-20.

    Google Scholar

    [29] Li S, Yin C Q, Guilmette C, et al. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet[J]. Earth-Science Reviews, 2019, 198: 102907. doi: 10.1016/j.earscirev.2019.102907

    CrossRef Google Scholar

    [30] Ma A L, Hu X M, Kapp P, et al. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block(Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 506: 30-47. doi: 10.1016/j.palaeo.2018.06.005

    CrossRef Google Scholar

    [31] Yan L L, Zhang K J. Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, central Tibet, western China[J]. Gondwana Research, 2020, 79: 110-124. doi: 10.1016/j.gr.2019.08.008

    CrossRef Google Scholar

    [32] Chen S S, Fan W M, Shi R D, et al. Early Cretaceous volcanic rocks in Yunzhug area, central Tibet, China, associated with arc-continent collision in the Tibetan Plateau?[J]. Lithos, 2021, 80: 105827.

    Google Scholar

    [33] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    [34] Hou Z Q, Duan L F, Lu Y J, et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen[J]. Economic Geology, 2015, 110: 1541-1575. doi: 10.2113/econgeo.110.6.1541

    CrossRef Google Scholar

    [35] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [36] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69. doi: 10.1016/j.chemgeo.2004.06.017

    CrossRef Google Scholar

    [37] Sláma J, Kosler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [38] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced mel-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [39] Ludwig K R. Users Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Special Publication No. 4. Berkeley Geochronology Centre, 2003.

    Google Scholar

    [40] Woodhead J D, Hergt J M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination[J]. Geostandards and Geoanalytical Research, 2005, 29(2): 183-195. doi: 10.1111/j.1751-908X.2005.tb00891.x

    CrossRef Google Scholar

    [41] Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical geology, 2008, 255(1/2): 231-235.

    Google Scholar

    [42] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [43] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [44] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society. Special Publications, London, 1989: 313-345.

    Google Scholar

    [45] Baxter A T, Aitchison J C, Zyabrev S V. Radiolarian age constraints on Meso-Tethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet[J]. Journal of the Geological Society, 2009, 166: 689-694. doi: 10.1144/0016-76492008-128

    CrossRef Google Scholar

    [46] Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23: 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [47] 王保弟, 刘函, 王立全, 等. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化[J]. 地球科学, 2020, 45(8): 2764-2784.

    Google Scholar

    [48] Shi R D, Griffin W L, O'Reilly S Y, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21: 194-206. doi: 10.1016/j.gr.2011.05.011

    CrossRef Google Scholar

    [49] 黄启帅, 史仁灯, 丁炳华, 等. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约[J]. 岩石矿物学杂志, 2012, 31(4): 465-478. doi: 10.3969/j.issn.1000-6524.2012.04.001

    CrossRef Google Scholar

    [50] Zhang Y X, Li Z W, Zhu L D, et al. Newly discovered eclogites from the Bangong Meso-Tethyan suture zone(Gaize, central Tibet, western China): mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2016, 58(5): 574-587. doi: 10.1080/00206814.2015.1096215

    CrossRef Google Scholar

    [51] Boudier F, Nicolas A. Axial melt lenses at oceanic ridges-A case study in the Oman ophiolite[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 313-325.

    Google Scholar

    [52] Sotiriou P, Polat A. Comparisons between Tethyan anorthosite-bearing ophiolites and Archean anorthosite-bearing layered intrusions: Implications for Archean geodynamic processes[J]. Tectonics, 2020, 39(8): e2020TC006096.

    Google Scholar

    [53] Kelemen P B, Aharanov E. Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges[J]. Geophysical Monograph-American Geophysical Union, 1998, 106: 267-90.

    Google Scholar

    [54] Fan J J, Li C, Xie C M, et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys[J]. International Geology Review, 2014, 56(12): 1504-1520. doi: 10.1080/00206814.2014.947639

    CrossRef Google Scholar

    [55] Kapp P, DeCelles P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. doi: 10.2475/03.2019.01

    CrossRef Google Scholar

    [56] Liu W L, Huang Q T, Gu M, et al. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet[J]. Gondwana Research, 2018, 60: 1-14. doi: 10.1016/j.gr.2018.03.017

    CrossRef Google Scholar

    [57] Shi R D, Yang J S, Xu Z Q, et al. Discovery of the boninite series volcanic rocks in the Bangong Lake ophiolite mélange, western Tibet, and its tectonic implications[J]. Chinese Science Bulletin, 2004, 49(12): 1272-1278. doi: 10.1360/04wd0006

    CrossRef Google Scholar

    [58] 周亚楠, 邵瑞琦, 姜南, 等. 拉萨地块保吉地区晚侏罗世-早白垩世地层磁组构特征[J]. 地质通报, 2019, 38(4): 522-535.

    Google Scholar

    [59] 尹涛, 李威, 尹显科, 等. 西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据[J]. 中国地质, 2019, 46(5): 1105-1115.

    Google Scholar

    [60] Tang Y, Zhai Q G, Hu P Y, et al. Southward subduction of the Bangong-Nujiang Tethys Ocean: insights from ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet[J]. International Journal of Earth Sciences, 2020, 109(2): 631-647. doi: 10.1007/s00531-020-01823-x

    CrossRef Google Scholar

    [61] 和钟铧, 杨德明, 王天武, 等. 西藏嘉黎断裂带凯蒙蛇绿岩的地球化学特征及构造意义[J]. 矿物岩石, 2006, 26(1): 69-74. doi: 10.3969/j.issn.1001-6872.2006.01.013

    CrossRef Google Scholar

    [62] 和钟铧, 杨德明, 王天武. 西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义[J]. 岩石学报, 2006, 22(3): 653-660.

    Google Scholar

    [63] 吴功建, 肖序常, 李廷栋. 青藏高原亚东-格尔木地学断面[J]. 地质学报, 1989, 63(4): 285-296. doi: 10.3321/j.issn:0001-5717.1989.04.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(2805) PDF downloads(23) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint