2021 Vol. 40, No. 8
Article Contents

ZENG Xiaowen, WANG Ming, LI Hang, ZENG Xianjin, SHEN Di. Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Constraint from geochemistry of the island-arc basalts in the Asa mélange zone, central Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1291-1301.
Citation: ZENG Xiaowen, WANG Ming, LI Hang, ZENG Xianjin, SHEN Di. Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Constraint from geochemistry of the island-arc basalts in the Asa mélange zone, central Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1291-1301.

Tectonic attribute of the Shiquanhe-Namco ophiolitic belt: Constraint from geochemistry of the island-arc basalts in the Asa mélange zone, central Tibet

More Information
  • The tectonic setting of the Shiquanhe-Namco ophiolitic belt in central Tibet is a key to understanding the Mesozoic tectonic evolution of the Meso-Tethys Ocean.Based on the analysis of major and trace element compositions of island arc basalts in the Asa mélange zone, central Tibet, its tectonic significance was discussed.Field observation and microscopic study indicate that they were formed in submarine eruption environment.Whole-rock geochemical analyses suggest that these rocks belong to calc-alkaline rocks, rich in light rare earth and Ba, Th, Pb large-ion lithophile elements, and depleted in Nb and Ta, with clear differentiation of light and heavy rare earth elements and flat distribution of heavy rare earth elements.Geochemical analysis shows that the rocks were originated from partial melting of depleted mantle metasomatized by melt of subducting sediments and formed under the oceanic island arc environment.Combined with previous work, it is suggested that there are some island arc basalts widely preserved in the Shiquanhe-Namco ophiolitic belt.The existence of the island-arc magmatic rocks within the Shiquanhe-Namco ophiolitic belt reveals that the Shiquanhe-Namco ophiolitic belt cannot be interpreted as an ophiolite in a single back-arc setting but contains magmatic products under various tectonic settings.The results show that the Shiquanhe-Namco ophiolite belt does not only retain the remains of backarc basin, but also contains the magmatic products of various genesis in the subduction environment.

  • 加载中
  • [1] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and Palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [2] Pan G, Wang L, Li R, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [3] 刘一鸣, 李三忠, 于胜尧, 等. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程[J]. 大地构造与成矿学, 2019, 43(4): 824-838.

    Google Scholar

    [4] 徐梦婧. 青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D]. 吉林大学博士学位论文, 2014.

    Google Scholar

    [5] 王保弟, 刘函, 王立全, 等. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化[J]. 地球科学. 2020, 45(8): 2764-2784.

    Google Scholar

    [6] 唐峰林, 黄建村, 罗小川, 等. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工学院学报, 2004, (3): 245-250. doi: 10.3969/j.issn.1674-3504.2004.03.009

    CrossRef Google Scholar

    [7] 尹滔, 尹显科, 秦宇龙, 等. 西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学: 对班公湖-怒江洋构造演化的启示[J]. 地球科学. 2020, 45(7): 2345-2359.

    Google Scholar

    [8] Schneider W, Mattern F, Wang P J, et al. Tectonic and sedimentary basin evolution of the eastern Bangong-Nujiang zone(Tibet): a Reading cycle[J]. International Journal of Earth Sciences, 2003, 92(2): 228-254. doi: 10.1007/s00531-003-0311-5

    CrossRef Google Scholar

    [9] Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22: 1029.

    Google Scholar

    [10] Allegre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [11] Liu W L, Huang Q T, Gu M, et al. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet[J]. Gondwana Research, 2018, 60: 1-14. doi: 10.1016/j.gr.2018.03.017

    CrossRef Google Scholar

    [12] Li H, Wang M, Zeng X W, et al. Generation of Jurassic high-mg diorite and plagiogranite intrusions of the asa area, tibet: Products of intra-oceanic subduction of the Meso-Tethys ocean[J]. Lithos, 2020, 362/363: 105481. doi: 10.1016/j.lithos.2020.105481

    CrossRef Google Scholar

    [13] 吴珍汉, 叶培盛, 杨艳. 西藏阿里推覆构造与蛇绿岩构造侵位[J]. 中国地质, 2013, 40(1): 182-190. doi: 10.3969/j.issn.1000-3657.2013.01.013

    CrossRef Google Scholar

    [14] Wu Z, Barosh P J, Ye P, et al. Late Cretaceous tectonic framework of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2015, 114: 693-703. doi: 10.1016/j.jseaes.2014.11.021

    CrossRef Google Scholar

    [15] Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-Yunzhug-Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300/301: 250-260. doi: 10.1016/j.lithos.2017.11.025

    CrossRef Google Scholar

    [16] Tang Y, Zhai Q G, Chung S L, et al. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the North-Central Tibetan Plateau[J]. Geological Society of America Bulletin, 2020, 132(9/10): 2202-2220.

    Google Scholar

    [17] 曾孝文, 王明, 范建军, 等. 青藏高原中部阿索蛇绿岩岩石学与同位素年龄[J]. 地质通报, 2018, 37(8): 1492-1502.

    Google Scholar

    [18] Zhu D C, Zhao Z-D, Niu Y, et al. The origin and Pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [19] Zeng X W, Wang M, Fan J J, et al. Geochemistry and geochronology of gabbros from the asa ophiolite, Tibet: Implications for the Early Cretaceous evolution of the Meso-Tethys ocean[J]. Lithos, 2018, 320/321: (192-206. doi: 10.1016/j.lithos.2018.09.013

    CrossRef Google Scholar

    [20] Liu Y, Wang M, Li C, et al. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet: Evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review, 2018, 61(5): 562-583.

    Google Scholar

    [21] Wang M, Zeng X W, Xie C M, et al. Dating of detrital zircon grains and fossils from Late Palaeozoic sediments of the Baruo area, Tibet: Constraints on the Late Palaeozoic evolution of the Lhasa Terrane[J]. International Geology Review, 2020, 62(4): 465-478. doi: 10.1080/00206814.2019.1619199

    CrossRef Google Scholar

    [22] 唐峰林, 黄建村, 罗小川, 等. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工学院学报, 2004, (3): 245-250. doi: 10.3969/j.issn.1674-3504.2004.03.009

    CrossRef Google Scholar

    [23] Li H, Wang M, Zeng X W, et al. Slab break-off origin of 105 Ma a-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 157(8): 1281-1298. doi: 10.1017/S0016756819001559

    CrossRef Google Scholar

    [24] 于红. 陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D]. 中国地质大学(北京) 硕士学位论文, 2011.

    Google Scholar

    [25] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [26] Ross P S, Polat A, Bédard J H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams[J]. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839. doi: 10.1139/E09-054

    CrossRef Google Scholar

    [27] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [28] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23(1): 251-285.

    Google Scholar

    [29] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48.

    Google Scholar

    [30] Zhao J H, Asimow P D. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc-and MORB-like dike swarms in South China[J]. Journal of Petrology, 2018, 59(9): 1811-1844. doi: 10.1093/petrology/egy080

    CrossRef Google Scholar

    [31] Ma X H, Cao R, Zhou Z H, et al. Early Cretaceous high-Mg diorites in the Yanji area, northeastern China: petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 97: 393-405. doi: 10.1016/j.jseaes.2014.07.010

    CrossRef Google Scholar

    [32] Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland plume[J]. Earth & Planetary Science Letters, 1997, 153(3/4): 197-208.

    Google Scholar

    [33] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical Mapping of the mariana arc-basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07006.

    Google Scholar

    [34] Dilek Y, Furnes H, Shallo M. Geochemistry of the Jurassic Mirdita ophiolite(albania) and the MORB to SSZ evolution of a marginal basin oceanic crust[J]. Lithos, 2008, 100: 174-209. doi: 10.1016/j.lithos.2007.06.026

    CrossRef Google Scholar

    [35] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes[J]. Earth & Planetary Science Letters, 2001, 192(3): 331-346.

    Google Scholar

    [36] Hart S R, Staudigel H. The control of alkalies and uranium in seawater by ocean crust alteration[J]. Earth and Planetary Science Letters, 1982, 58(2): 202-212. doi: 10.1016/0012-821X(82)90194-7

    CrossRef Google Scholar

    [37] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50: 11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [38] Cabanis B, Lecolle M. The La/10-Y/15-Nb/8 diagram: a tool for discrimination volcanic series and evidencing continental crust magmatic mixtures and/or contamination(en)[J]. Physics. Chemistry. Space sciences. Earth sciences, 1989, 309: 2023-2029.

    Google Scholar

    [39] Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: New insights from iodp drilling[J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482

    CrossRef Google Scholar

    [40] Ishizuka O, Taylor RN, Yuasa M, et al. Making and breaking an island arc: A new perspective from the oligocene Kyushu-Palau arc, Philippine sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005, DOI:10.1029/2010GC003440.

    CrossRef Google Scholar

    [41] Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 175-204. doi: 10.1146/annurev.ea.21.050193.001135

    CrossRef Google Scholar

    [42] Matte P, Tapponnier P, Amaud N, et al. Tectonics of western Tibet, between the Tarim and the Indus[J]. Earth and Planetary Science Letters, 1996, 142: 311-330. doi: 10.1016/0012-821X(96)00086-6

    CrossRef Google Scholar

    [43] Yuan Y, Yin Z, Liu W, et al. Tectonic evolution of the Meso-Tethys in the western segment of Bangonghu-Nujiang suture zone: Insights from geochemistry and geochronology of the Lagkor Tso ophiolite[J]. Acta Geoblgica Sinica(English edition), 2015, 89: 369-388.

    Google Scholar

    [44] Peng Y B, Yu S Y, Li S Z, et al. The odyssey of Tibetan Plateau accretion prior to Cenozoic India-Asia collision: Probing the Mesozoic tectonic evolution of the Bangong-Nujiang Suture[J]. Earth-Science Reviews, 2020, 211: 103376. doi: 10.1016/j.earscirev.2020.103376

    CrossRef Google Scholar

    [45] Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean: insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245: 18-33. doi: 10.1016/j.lithos.2015.07.016

    CrossRef Google Scholar

    [46] Yang P, Huang Q, Zhou R, et al. Geochemistry and geochronology of ophiolitic rocks from the Dongco and Lanong areas, Tibet: Insights into the evolution history of the Bangong-Nujiang Tethys ocean[J]. Minerals, 2019, 9(8): 466. doi: 10.3390/min9080466

    CrossRef Google Scholar

    [47] Zhu D C, Zhao Z D, Niu Y, et al. The lhasa terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.

    Google Scholar

    [48] 胡承祖. 狮泉河-古昌-永珠蛇绿岩带特征及其地质意义[J]. 成都地质学院学报, 1990, (1): 23-30.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(3594) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint