2021 Vol. 40, No. 8
Article Contents

LI Hang, WANG Ming, ZENG Xiaowen, ZENG Xianjin, SHEN Di. Geochronology, magmatic genesis and tectonic setting of the Musidanjiao tufflava in the Asa area, Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1302-1313.
Citation: LI Hang, WANG Ming, ZENG Xiaowen, ZENG Xianjin, SHEN Di. Geochronology, magmatic genesis and tectonic setting of the Musidanjiao tufflava in the Asa area, Tibet[J]. Geological Bulletin of China, 2021, 40(8): 1302-1313.

Geochronology, magmatic genesis and tectonic setting of the Musidanjiao tufflava in the Asa area, Tibet

More Information
  • In order to further explore the evolution history of Cretaceous magmatism in the Asa area, central Tibet, samples were collected from Early Cretaceous rhyolitic tufflava near Musidanjiao, south of the Asa area, to carry out the geochronological and geochemical studies.The mean zircon 206Pb/238U age of Musidanjiao tufflava yields 129.3±1.9 Ma(n=17, mswd=0.039).The geochemical test results show that the tufflava has extremely high SiO2 content(76.27%~78.70%), moderate Al2O3(11.23~12.21%), total alkali content of 5.60%~6.30%, very low total iron(1.16%~1.50%), CaO(0.62%~1.40%), MgO(0.19%~0.24%), TiO2(0.09%~0.15%), and P2O5(0.02%~0.02%) contents.Moreover, they show enrichment of large ion lithophile elements such as U, Th and Pb, and depletion of high field strength elements such as Nb, Ta and Ti, as well as enrichment of LREE, flat HREE and obvious negative Eu anomaly.These characteristics indicate that they might be originated from the partial melting of middle crust and experienced significant crystallization differentiation in the later period, which is geochemically similar to the typical Ⅰ-type granitoids developed in the continental margin arc region.In combination with the reported continental margin island arc magmatism of~120 Ma and the extensional magmatism of~105 Ma in the Asa area, it is suggested that the Early Cretaceous rhyolitic taffflava magmatism of~130 Ma in the Asa area might be formed in the background of the southward subduction of Bangong-Nujiang Ocean.

  • 加载中
  • [1] Dewey J F, Shackelton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philos. Trans. R. Soc. Lond. A., 1988, 327: 379-413. doi: 10.1098/rsta.1988.0135

    CrossRef Google Scholar

    [2] Suess E. Are great oceans depths permanent?[J]Nat. Sci., 1893, 2: 180-187.

    Google Scholar

    [3] Şengör A M C, Yilmaz Y. Tethyan evolution of Turkey: a plate tectonic approach[J]. Tectonophysics, 1981, 75: 181-241. doi: 10.1016/0040-1951(81)90275-4

    CrossRef Google Scholar

    [4] Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020

    CrossRef Google Scholar

    [5] Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Science, 2012, 53(2): 3-14.

    Google Scholar

    [6] Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [7] Zhu D C, Zhao Z D, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. doi: 10.1130/G31895.1

    CrossRef Google Scholar

    [8] Luo A B, Wang M, Li C, et al. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: post-collisional partial melting of thickened lower crust[J]. International Journal of Earth Sciences, 2019, 108(6): 1979-1999. doi: 10.1007/s00531-019-01744-4

    CrossRef Google Scholar

    [9] Liu D L, Shi M, Jiang S Y. Dating oceanic subduction in the Jurassic Bangong-Nujiang oceanic arc: a zircon U-Pb age and Lu-Hf isotopes and Al-in-Hornblende barometry study of the Lameila pluton in western Tibet, China[J]. Minerals, 2019, 9(12): 754. doi: 10.3390/min9120754

    CrossRef Google Scholar

    [10] Li H, Wang M, Zeng X W, et al. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 157(8): 1-18.

    Google Scholar

    [11] 王嘉星, 刘治博, 李海峰, 等. 西藏班公湖-怒江结合带中段早白垩世花岗闪长斑岩年龄, Hf同位素及地球化学特征[J]. 地质通报, 2020, 39(5): 608-620.

    Google Scholar

    [12] 刘治博, 李海峰, 高轲, 等. 西藏班公湖-怒江缝合带中段去申拉组火山岩锆石U-Pb年龄及Hf同位素特征[J]. 地质通报, 2019, 38(6): 1018-1027.

    Google Scholar

    [13] Gutscher M A, Malod J, Rehault J P, et al. Evidence for active subduction beneath gibraltar[J]. Geology, 2003, 30(12): 1071-1074.

    Google Scholar

    [14] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [15] Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.

    Google Scholar

    [16] Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4): 298-312.

    Google Scholar

    [17] Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146/147: 264-275. doi: 10.1016/j.lithos.2012.05.006

    CrossRef Google Scholar

    [18] Chen Y, Zhu D C, Zhao Z D, et al. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2): 449-463. doi: 10.1016/j.gr.2013.06.005

    CrossRef Google Scholar

    [19] 张晓倩, 朱弟成, 赵志丹, 等. 西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J]. 岩石学报, 2010, 26(6): 1793-1804.

    Google Scholar

    [20] 吴浩, 李才, 胡培远, 等. 藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J]. 地质通报, 2014, 33(11): 1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016

    CrossRef Google Scholar

    [21] Wu H, Li C, Xu M, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97: 51-66. doi: 10.1016/j.jseaes.2014.10.014

    CrossRef Google Scholar

    [22] Wu H, Li C, Hu P Y, et al. Early Cretaceous(100-105 Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2014, 57(9/10): 1172-1188.

    Google Scholar

    [23] Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 ma magmatism in the northern lhasa terrane, tibet: implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168: 144-159.

    Google Scholar

    [24] 康志强, 许继峰, 董彦辉, 等. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?[J]. 岩石学报, 2008, 2: 303-314.

    Google Scholar

    [25] Zhang L L, Zhu D C, Zhao Z D, et al. Early granitoids in Xainza, Tibet: evidence of slab break-off[J]. Acta Petrologica Sinica, 2011, 27: 1938-1948.

    Google Scholar

    [26] Liu D L, Huang Q S, Fan S Y, et al. Subduction of the bangong-nujiang ocean: constraints from granites in the bangong co area, Tibet[J]. Geological Journal, 2014, 49: 188-206. doi: 10.1002/gj.2510

    CrossRef Google Scholar

    [27] 解龙, 顿都, 朱利东, 等. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 中国地质, 2015, (5): 1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004

    CrossRef Google Scholar

    [28] Li Y, He H, Wang C, et al. Early Cretaceous(ca. 100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: Product of slab break-off[J]? International Journal of Earth Science, 2016, 106(4): 1289-1310.

    Google Scholar

    [29] Yang Z Y, Wan Q, Zhang C, et al. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: New insights into the genesis of highly evolved granites[J]. Lithos, 2018, 312/313: 258-273. doi: 10.1016/j.lithos.2018.04.018

    CrossRef Google Scholar

    [30] Anderson T. Correction of common lead in U-Pb analyses that do not report 204 Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.

    Google Scholar

    [31] Hao Y J, Ren Y S, Zhao H L, et al. Metallogenic mechanism and tectonic setting of tungsten mineralization in the yangbishan deposit in northeastern china[J]. Acta Geologica Sinica, 2018, 92: 241-267. doi: 10.1111/1755-6724.13504

    CrossRef Google Scholar

    [32] 李文庆. 硼酸盐熔融制样法测定辉绿岩中10种常量元素的准确度[J]. 世界地质, 2019, 38(3): 843-851.

    Google Scholar

    [33] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [34] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101: 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [35] Middlemost E A K. Magmas and Magmatic Rocks. An Introduction to Igneous Petrology[M]. London: Longman, 1986: 1-26.

    Google Scholar

    [36] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [37] Janoušek V, Finger F, Roberts M, et al. Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Transactions of the Royal Society of Edinburgh[J]. Earth Sciences. 2007, 95(1/2): 141-159

    Google Scholar

    [38] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [39] 李斌, 刘淼, 陈井胜, 等. 内蒙古赤峰敖汉地区酸性火山岩的形成时代、地球化学特征及其意义[J]. 地球科学, 2019, 44(10): 3378-3392.

    Google Scholar

    [40] Boztuĝ D, Harlavan Y, Arehart G, et al. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriĝi-Sivas region, eastern-central Anatolia, Turkey[J]. Lithos, 2007, 97: 193-218. doi: 10.1016/j.lithos.2006.12.014

    CrossRef Google Scholar

    [41] 王德滋, 周金城, 邱检生, 等. 中国东南部晚中生代花岗质火山-侵入杂岩特征与成因[J]. 高校地质学报, 2000, 6: 487-498. doi: 10.3969/j.issn.1006-7493.2000.04.001

    CrossRef Google Scholar

    [42] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [43] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3/4): 281-302.

    Google Scholar

    [44] Ding L, Lai Q Z. New geological evidence of crustal thickening in the gangdese block prior to the indo-asian collision[J]. Chinese Science Bulletin, 2003, 15: 1604-1610.

    Google Scholar

    [45] Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9): 1202-1222. doi: 10.1130/B25388.1

    CrossRef Google Scholar

    [46] Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth Science Reviews, 2012, 114(3/4): 236-249.

    Google Scholar

    [47] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865-878. doi: 10.1130/B25595.1

    CrossRef Google Scholar

    [48] Wang W, Wang M, Zhai Q G, et al. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet[J]. Gondwana Research, 2020, 78: 77-91. doi: 10.1016/j.gr.2019.09.008

    CrossRef Google Scholar

    [49] 曾孝文, 王明, 范建军, 等. 藏北阿索地区早白垩世基性岩脉地球化学及年代学特征: 对班公湖-怒江洋闭合时限的约束[J]. 地球科学, 2019, 44(7): 2408-2425.

    Google Scholar

    [50] Pearce J A, Harris N B W, TIndle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(943) PDF downloads(8) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint