2021 Vol. 40, No. 8
Article Contents

LI Huaqi, LI Tianfu, JI Fengbao. Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt[J]. Geological Bulletin of China, 2021, 40(8): 1279-1290.
Citation: LI Huaqi, LI Tianfu, JI Fengbao. Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt[J]. Geological Bulletin of China, 2021, 40(8): 1279-1290.

Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt

  • The nature and early evolution of the ancient ocean basin represented by the Bangongco-Nujiang suture zone in the central Qinghai-Tibetan Plateau are still controversial.To identify the nature of the Early Jurassic tectono-magmatic events and micro-continental tectonics and orogenic processes along the mid-eastern Nujiang suture, geochemical study on meta-basaltic rocks and 40Ar-39Ar dating of amphibole from the Tongka ophiolitic mélange, eastern Nujiang belt, were conducted.The meta-basalts in the Tongka ophiolitic mélange witnessed strong metamorphic deformation, indicating the mineralogical composition of the epidote-amphibolite facies.Rare earth element(REE) patterns of the meta-basaltic rocks on the chondrite-normalized REE diagram display LREE depletions indicative of N-MORB, whereas on the N-MORB-normalized spider diagram, the samples indicate Rb, Ba, Th, U, Pb and Sr enrichments and Nb and Ta depletions, which suggest a mixing characteristic of arc and N-MORB, and an origin from back-arc basin spreading center, indicating a SSZ affinity.The 40Ar-39Ar dating of the amphibole from a meta-basalt sample yields a plateau age of 161 ±2 Ma, analogous to 40Ar-39Ar cooling ages(165~167 Ma) of biotite from the Tongka and Amdo gneisses, which provides direct evidence from ophiolite emplacement for local closure of the eastern Nujiang Ocean and Early Jurassic collision along the Tongka-Exue suture between the Jiayuqiao and Tongka micro-blocks.On the basis of comprehensive analyses of the early and late Jurassic magmatic rocks north of the Bangong-Nujiang belt, the Bangong-Nujiang belt is assumed to have distinct evolutionary histories, subduction polarities and collisional timing at different segments and ophiolitic branches.The multi-island-accretive orogeny model suggests that the orogeny in the hinterland of the Qinghai-Tibet Plateau might be the result of varying level convergences by diverse-sized terranes/blocks with consumption of different oceanic basins, rather than the re-opening process of the Meso-Tethyan Ocean after the closure of the Paleo-Tethyan Ocean.

  • 加载中
  • [1] Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4): 1029-1052.

    Google Scholar

    [2] 许志琴, 李海兵, 杨经绥. 造山的高原——青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006, 13(4): 1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002

    CrossRef Google Scholar

    [3] Allegre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307: 17-22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [4] Girardeau J, Marcoux J, Allkgre C J, et al. Tectonic environment and geodynamic significance of the Neo Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307: 27-31. doi: 10.1038/307027a0

    CrossRef Google Scholar

    [5] 赵文津, 刘葵, 蒋忠惕, 等. 西藏班公湖-怒江缝合带——深部地球物理给出的启示[J]. 地质通报, 2004, 23(7): 623-635. doi: 10.3969/j.issn.1671-2552.2004.07.001

    CrossRef Google Scholar

    [6] 夏斌, 刘维亮, 周国庆, 等. 西藏蓬湖西镁质榴辉岩中的出溶物及其地质意义[J]. 南京大学学报(自然科学), 2013, 49(3): 356-386.

    Google Scholar

    [7] Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [8] 王希斌, 鲍佩声, 邓万明, 等. 西藏蛇绿岩[M]. 北京: 地质出版社, 1987.

    Google Scholar

    [9] 史仁灯. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报, 2007, 52(2): 223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016

    CrossRef Google Scholar

    [10] Dewey J F, Shackelton R M, Chang C F, et al. The tectonic development of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, A327: 379-413.

    Google Scholar

    [11] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4): 298-312.

    Google Scholar

    [12] Matte P, Taponnie P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarims andIndus[J]. Earth and Planetary Science Letters, 1996, 142: 311-330. doi: 10.1016/0012-821X(96)00086-6

    CrossRef Google Scholar

    [13] 雍永源, 贾宝江. 板块剪式汇聚加地体拼贴——中特提斯消亡的新模式[J]. 沉积与特提斯地质, 2000, 20(1): 85-89. doi: 10.3969/j.issn.1009-3850.2000.01.007

    CrossRef Google Scholar

    [14] Wang W L, Aitchison J C, Lo C H, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melanges along Bangong-Nujiang suture, centralTibet[J]. Journal of Asian Earth Science, 2008, 33: 122-138. doi: 10.1016/j.jseaes.2007.10.022

    CrossRef Google Scholar

    [15] Zhang Z M, Dong X, Liu F, et al. Tectonic evolution of the Amdo terrane, central Tibet: petrochemistry and zircon U-Pb geochronology[J]. Journal of Geology, 2012, 120: 431-451. doi: 10.1086/665799

    CrossRef Google Scholar

    [16] Chen S S, Shi R D, Zou H B, et al. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone(centralTibet): Geological, geochemical and chronological evidence from volcanic rocks[J]. Lithos, 2015, 230: 30-45. doi: 10.1016/j.lithos.2015.05.009

    CrossRef Google Scholar

    [17] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.

    Google Scholar

    [18] 邓万明, Pearce J A. 拉萨至格尔木(1985) 和拉萨至加德曼都(1986) 的蛇绿岩[C]//中-英青藏高原综合科学考察队, 青藏高原地质演化. 北京: 科学出版社, 1990: 175-241.

    Google Scholar

    [19] Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in theLhasa block(Tibet): A geochronological study[J]. Journal of Geology, 1985, 93: 41-57. doi: 10.1086/628918

    CrossRef Google Scholar

    [20] Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [21] Guynn J H, Kapp P, Pullen A, et al. Tibetan terranerocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34: 505-508. doi: 10.1130/G22453.1

    CrossRef Google Scholar

    [22] Zhang X R, Shi R D, Huang Q S, et al. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites[J]. Gondwana Research, 2014, 26: 975-985. doi: 10.1016/j.gr.2013.08.003

    CrossRef Google Scholar

    [23] 张修政, 董永胜, 解超明, 等. 安多地区高压麻粒岩的发现及其意义[J]. 岩石学报, 2010, 26(7): 2106-2112.

    Google Scholar

    [24] 解超明, 李才, 苏犁, 等. 青藏高原安多高压麻粒岩同位素年代学研究[J]. 岩石学报, 2013, 29(3): 912-922.

    Google Scholar

    [25] Li H Q, Xu Z Q, Webb A A G, et al. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: implications for an archipelago-accretion orogenic model[J]. Tectonophysics, 2017, 702: 29-41. doi: 10.1016/j.tecto.2017.02.016

    CrossRef Google Scholar

    [26] Tao Y, Bi X W, Li C S, et al. Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China[J]. Lithos, 2014, 184/187: 314-323. doi: 10.1016/j.lithos.2013.10.031

    CrossRef Google Scholar

    [27] 谢尧武, 李林庆, 强巴扎西, 等. 藏东八宿地区朱村组火山岩地球化学、同位素年代学及其构造意义[J]. 地质通报, 2009, 28(9): 1244-1252. doi: 10.3969/j.issn.1671-2552.2009.09.012

    CrossRef Google Scholar

    [28] 李才, 谢尧武, 董永胜, 等. 藏东类乌齐一带吉塘岩群时代讨论及初步认识[J]. 地质通报, 2009, 28(9): 1178-1180. doi: 10.3969/j.issn.1671-2552.2009.09.002

    CrossRef Google Scholar

    [29] 周详, 王根厚, 普布次仁, 等. 西藏东部嘉玉桥拆离系核部杂岩构造特征及其大地构造意义[J]. 沉积和特提斯地质, 1997, 21: 56-61.

    Google Scholar

    [30] 王根厚. 藏东他念他翁山链变质杂岩系变形特征及表露机制[D]. 中国地质大学(北京) 博士学位论文, 2006.

    Google Scholar

    [31] Zhang K J, Zhang Y X, Tang X C, et al. First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision[J]. Terra Nova, 2008, 20: 302-308. doi: 10.1111/j.1365-3121.2008.00821.x

    CrossRef Google Scholar

    [32] 张玉修. 班公湖-怒江缝合带中西段构造演化[D]. 中国科学院研究生院博士学位论文, 2007.

    Google Scholar

    [33] 董永胜, 谢尧武, 李才, 等. 西藏东部八宿地区发现退变质榴辉岩[J]. 地质通报, 2007, 26(8): 1018-1020. doi: 10.3969/j.issn.1671-2552.2007.08.015

    CrossRef Google Scholar

    [34] 李才, 谢尧武, 沙绍礼, 等. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2008, 27(1): 64-68. doi: 10.3969/j.issn.1671-2552.2008.01.005

    CrossRef Google Scholar

    [35] Xu W C, Zhang H F, Chen L R, et al. Transition from the lithospheric to asthenospheric mantle-derived magmatism in the Early Jurassic along eastern Bangong-Nujiang Suture, Tibet: Evidence for continental arc extension induced by slab rollback[J]. GSA Bulletin, 2021, 133(1/2): 134-148.

    Google Scholar

    [36] 陈文, 郭彦如, 崔彬, 等. 基于MM 1200B质谱系统的MDD模式40Ar-39Ar实验技术及其在阿尔金山中生代冷却中研究中的应用[J]. 质谱学报, 2001, 22(3): 7-14.

    Google Scholar

    [37] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [38] Müller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study[J]. Mineralogy and Petrology, 1992, 46: 259-289. doi: 10.1007/BF01173568

    CrossRef Google Scholar

    [39] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological. Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [40] Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982, 528-548.

    Google Scholar

    [41] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [42] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [43] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    [44] 张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001.

    Google Scholar

    [45] 史仁灯, 杨经绥, 许志琴, 等. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据[J]. 岩石矿物学杂志, 2005, 24(5): 397-408. doi: 10.3969/j.issn.1000-6524.2005.05.008

    CrossRef Google Scholar

    [46] 韦振权, 夏斌, 徐力峰, 等. 西藏蓬湖西蛇绿岩地球化学及构造背景研究[J]. 地质论评, 2009, 55(6): 785-794. doi: 10.3321/j.issn:0371-5736.2009.06.003

    CrossRef Google Scholar

    [47] 陈晓坚, 杨经绥, 董玉飞, 等. 西藏东巧蛇绿岩中玄武质岩石成因和构造背景探讨[J]. 地质学报, 2019, 93(10): 2509-2530.

    Google Scholar

    [48] 赖绍聪, 刘池阳. 青藏高原安多岛弧型蛇绿岩地球化学及成因[J]. 岩石学报, 2003, 19(4): 675-682.

    Google Scholar

    [49] Zhou M F, Malpas J, Robinson P T, et al. The Dynamo-thermal aureole of the Donqiao ophiolite(northern Tibet)[J]. Canadian Journal of Earth Science, 1997, 34(1): 59-65. doi: 10.1139/e17-005

    CrossRef Google Scholar

    [50] Ma A, Hu X, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang basin: implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4790-4813.

    Google Scholar

    [51] Ma A, Hu X, Kapp P, et al. Pre-Oxfordian(>163 Ma) ophiolite obduction in Central Tibet[J]. Geophysical Research Letters, 2020, 47: https://doi.org/10.1029/2019GL086650. doi: 10.1029/2019GL086650

    CrossRef Google Scholar

    [52] Chen S S, Shi R D, Fan W M, et al. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4172-4190.

    Google Scholar

    [53] Zhang X Z, Wang Q, Dong Y S, et al. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet: Link to flat-slab subduction[J]. Tectonics, 2017, 36: 2918-2935.

    Google Scholar

    [54] 韦少港, 宋扬, 唐菊兴, 等. 西藏改则县多龙SSZ型蛇绿岩的锆石U-Pb年龄、岩石地球化学及Sr-Nd同位素特征: 班公湖-怒江洋晚二叠世洋内俯冲的证据[J]. 岩石学报, 2019, 35(2): 505-522.

    Google Scholar

    [55] Fan J J, Niu Y L, Luo A B, et al. Timing of the Meso-Tethys Ocean opening: Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane, Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: https://doi.org/10.1016/j.palaeo.2021.110265 doi: 10.1016/j.palaeo.2021.110265

    CrossRef Google Scholar

    [56] Wu H, Xie C M, Li C, et al. Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle-Late Jurassic magmatism in Southern Qiangtang, China[J]. Gondwana Research, 2016, 39: 1-13.

    Google Scholar

    [57] Li S, Guilmette C, Yin C Q, et al. Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet[J]. Gondwana Research, 2019, 71: 179-193.

    Google Scholar

    [58] Chen S S, Shi R D, Fan W M, et al. Middle Triassic ultrapotassic rhyolites from the Tanggula Pass, southern Qiangtang, China: A previously unrecognized stage of silicic magmatism[J]. Lithos, 2016, 264: 258-276.

    Google Scholar

    [59] 张开均, 唐显春. 青藏高原腹地榴辉岩研究进展及其地球动力学意义[J]. 科学通报, 2009, 54(13): 1804-1814.

    Google Scholar

    [60] 曾庆高, 王保弟, 强巴扎西, 等. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(8): 1123-1128.

    Google Scholar

    [61] 王保弟, 王立全, 强巴扎西, 等. 早三叠世北澜沧江结合带碰撞作用: 类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J]. 岩石学报, 2011, 27(9): 2752-2762.

    Google Scholar

    [62] Guynn J H, Kapp P, George E, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Science, 2012, 43: 23-50.

    Google Scholar

    [63] Zhai Q G, Jahn B M, Wang J, et al. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. GSA Bulletin, 2016, 128: 355-373.

    Google Scholar

    [64] Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349-350: 54-70.

    Google Scholar

    [65] 王嘉星, 刘治博, 李海峰, 等. 西藏班公湖-怒江结合带中段早白垩世花岗闪长斑岩年龄、Hf同位素及地球化学特征[J]. 地质通报, 2020, 39(5): 608-620.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(2189) PDF downloads(22) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint