Citation: | FU Changlei, YAN Zhen, WANG Bingzhang, CHEN Lei, LI Junhui. Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture[J]. Geological Bulletin of China, 2021, 40(8): 1215-1230. |
The Paleoproterozoic gneiss and amphibolite were recognized in the Tuomoerrite area, eastern part of the North Qaidam ultra-high pressure metamorphic belt.Their tectonic affinities have significance for the understanding of regional tectonic framework.In the Tuomoerrite area, there are abundant early Paleozoic volcano-sedimentary rocks, ophiolitic rocks and intrusives, with minor gneiss and amphibolite lens discovered in the northeast part.The protoliths of gneiss and amphibolite are granidiorite and basic rock respectively.LA-ICP-MS U-Pb dating of zircon from gneiss and amphibolite yields ages of 2413±28 Ma(upper intercept age, n=29, MSWD=2.3), 1966±46 Ma(weighted mean 207Pb/206Pb age, n=4, MSWD=1.7), and 1922±22 Ma(upper intercept age, n=29, MSWD=1.3) respectively.Combined with cathodoluminescence images of zircon, 2413±28 Ma represents the magmatic crystallization age of the protolith of the gneiss.1966±46 Ma and 1922±22 Ma represent the metamorphic ages of the gneiss and amphibolite respectively.The gneiss shows typical adakitic geochemical feature, with high Sr, low Y, MgO, Cr, and Ni.The magmatic zircons have εHf(t) values between -0.8 and +4.0 and yield two-stage Hf model ages ranging from 2704 Ma to 2965 Ma.They also have positive εNd(t) ranging from +0.8 to +1.6.These geochemical and isotopic characteristics indicate that the gneisses were likely formed by partial melting of thickened mafic lower-crust.The rock assemblage, geochemical features and ages of these metamorphic rocks are consistent with those of the Delingha Complex to the north, indicating that they belong to the northern Oulongbuluke block rather than the North Qaidam belt.This understanding further constrains that the suture of the North Qaidam belt lies between the Saibagou ophiolite and the newly recognized Paleoproterozoic metamorphic rocks.
[1] | 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11. |
[2] | 许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002 |
[3] | Yin A, Manning C E, Lovera O, et al. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure(UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China[J]. International Geology Review, 2007, 49: 681-716. doi: 10.2747/0020-6814.49.8.681 |
[4] | 张雪亭, 杨生德. 青海省板块构造研究1: 100万青海省大地构造说明书[M]. 北京: 地质出版社, 2007. |
[5] | 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531-3554. |
[6] | Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011 |
[7] | 杨经绥, 张建新, 孟繁聪, 等. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J]. 地学前缘, 2003, 10(3): 291-314. doi: 10.3321/j.issn:1005-2321.2003.03.026 |
[8] | 张贵宾, 宋述光, 张立飞, 等. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义[J]. 岩石学报, 2005, 21(4): 1049-1058. |
[9] | 陈丹玲, 孙勇, 刘良, 等. 柴北缘野马滩超高压地体的成因——年代学研究结果的约束[J]. 西北大学学报(自然科学版), 2009, 39(4): 631-638. |
[10] | 张建新, 孟繁聪, 李金平, 等. 柴达木北缘榴辉岩中的柯石英及其意义[J]. 科学通报, 2009, (5): 618-623. |
[11] | Zhang J X, Yu S Y, Mattinson C G. Early Paleozoic polyphase metamorphism in northern Tibet, China[J]. Gondwana Research, 2017, 41: 267-289. doi: 10.1016/j.gr.2015.11.009 |
[12] | Song S G, Niu Y L, Zhang G B, et al. Two epochs of eclogite metamorphism link 'cold' oceanic subduction and 'hot' continental subduction, the North Qaidam UHP belt, NW China[C]//Zhang L F, Zhang Z M, Schertl H P, et al. HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. London: Geological Society of London, Special Publications, 2019, 474: 275-289. |
[13] | Zhang C, Zhang L F, Roermund H V, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4): 752-767. doi: 10.1016/j.jseaes.2011.04.002 |
[14] | 陈鑫, 郑有业, 许荣科, 等. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J]. 岩石学报, 2018, 34(6): 1685-1703. |
[15] | Ren Y F, Chen D L, Kelsey D E, et al. Metamorphic evolution of a newly identified Mesoproterozoic oceanic slice in the Yuka terrane and its implications for a multi-cyclic orogenic history of the North Qaidam UHPM belt[J]. Journal of Metamorphic Geology, 2018, 36(4): 463-488. doi: 10.1111/jmg.12300 |
[16] | Yu S Y, Li S Z, Zhang J X, et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China[J]. Earth-Science Reviews, 2019, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016 |
[17] | Yu S Y, Li S Z, Zhang J X, et al. Linking high-pressure mafic granulite, TTG-like(tonalitic-trondhjemitic) leucosome and pluton, and crustal growth during continental collision[J]. Geological Society of America Bulletin, 2019, 131(3/4): 572-586. |
[18] | Zhou G S, Zhang J X, Yu S Y, et al. Metamorphic evolution of eclogites and associated metapelites from the Yuka terrane in the North Qaidam ultrahigh pressure metamorphic belt, NW China: Constraints from phase equilibrium modeling[J]. Journal of Asian Earth Sciences, 2019, 173: 161-175. doi: 10.1016/j.jseaes.2019.01.017 |
[19] | Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 323-333. |
[20] | Xia L Q, Li X M, Yu J Y, et al. Mid-late Neoproterozoic to early paleozoic volcanism and tectonic evolution of the Qilianshan, NW China[J]. Geo. Res. J., 2016, 9/12: 1-41. |
[21] | Fu D, Kusky T, Wilde S A, et al. Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis[J]. GSA Bulletin, 2019, 131(5/6): 1031-1056. |
[22] | Fu C L, Yan Z, Wang Z Q, et al. Lajishankou Ophiolite Complex: Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt[J]. Tectonics, 2018, 37(5): 1321-1346. doi: 10.1029/2017TC004740 |
[23] | Fu C L, Yan Z, Aitchison J C, et al. Multiple subduction processes of the Proto-Tethyan Ocean: Implication from Cambrian intrusions along the North Qilian suture zone[J]. Gondwana Research, 2020, 87: 207-223. doi: 10.1016/j.gr.2020.06.007 |
[24] | Yan Z, Fu C L, Aitchison J C, et al. Retro-foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau[J]. Tectonics, 2019, 38(12): 4229-4248. doi: 10.1029/2019TC005560 |
[25] | 高延林. 青藏高原古洋壳恢复与重建问题讨论[J]. 青海地质, 2000, 9(1): 1-8. |
[26] | 潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(1): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002 |
[27] | 潘彤, 王福德. 初论青海省金矿成矿系列[J]. 黄金科学技术, 2018, 26(4): 423-430. |
[28] | 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991: 1-662. |
[29] | 庄玉军, 辜平阳, 李培庆, 等. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报, 2019, 38(11): 1801-1812. |
[30] | 林成贵, 郑有业, 程志中, 等. 柴北缘鱼卡榴辉岩型金红石矿床成矿物理条件[J]. 地质通报, 2019, 38(5): 866-883. |
[31] | 赖绍聪, 邓晋福, 赵海玲. 柴达木北缘古生代蛇绿岩及其构造意义[J]. 现代地质, 1996, 10(1): 18-28. |
[32] | 史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003, 22(3): 229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004 |
[33] | 王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003, 22(7): 487-493. |
[34] | 赵凤清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学[J]. 地质通报, 2003, 22(1): 28-31. |
[35] | 吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑), 2008, 38(8): 930-949. doi: 10.3321/j.issn:1006-9267.2008.08.002 |
[36] | 李峰, 吴志亮, 李保珠. 柴达木北缘滩间山群时代及其地质意义[J]. 大地构造与成矿学, 2007, 31(2): 226-233. doi: 10.3969/j.issn.1001-1552.2007.02.012 |
[37] | 高晓峰, 校培喜, 贾群子. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 2011, 85(9): 1452-1463. |
[38] | 夏文静, 牛漫兰, 闫臻, 等. 柴北缘牦牛山地区牦牛山组沉积相组合特征[J]. 地质学报, 2014, 88(5): 943-955. |
[39] | 张孝攀, 王权锋, 惠洁, 等. 柴北缘滩间山群火山岩岩石化学特征及构造环境[J]. 矿物岩石, 2015, 35(1): 18-26. doi: 10.3969/j.issn.1007-2802.2015.01.002 |
[40] | 宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(7): 916-940. |
[41] | 朱小辉, 陈丹玲, 王超, 等. 柴达木盆地北缘新元古代-早古生代大洋的形成发展和消亡[J]. 地质学报, 2015, 89(2): 234-251. |
[42] | Lu Z L, Zhang J X, Mattinson C. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China[J]. Journal of Metamorphic Geology, 2018, 36: 653-666. doi: 10.1111/jmg.12305 |
[43] | Li X C, Niu M L, Yakymchuk C, et al. A paired metamorphic belt in a subduction-to-collision orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China[J]. Journal of Metamorphic Geology, 2019, 37(4): 479-508. doi: 10.1111/jmg.12468 |
[44] | 陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘"达肯大坂群"的再厘定[J]. 地质通报, 2002, 21(1): 19-23. |
[45] | 李怀坤, 陆松年, 王惠初, 等. 青海柴北缘新元古代超大陆裂解的地质记录-全吉群[J]. 地质调查与研究, 2003, 26(1): 27-37. doi: 10.3969/j.issn.1672-4135.2003.01.006 |
[46] | 陈能松, 夏小平, 李晓彦, 等. 柴北缘花岗片麻岩的岩浆作用计时和前寒武纪地壳增长的锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 501-512. |
[47] | 郝国杰, 陆松年, 辛后田, 等. 青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件[J]. 吉林大学学报(地球科学版), 2004, 34(4): 495-501. |
[48] | Gong S L, Chen N S, Wang Q Y, et al. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance: LA-ICPMS U-Pb zircon geochronology and geochemistry[J]. Gondwana Research, 2012, 21: 152-166. doi: 10.1016/j.gr.2011.07.011 |
[49] | Gong S L, He C, Wang X C, et al. No plate tectonic shutdown in the early Paleoproterozoic: Constraints from the ca. 2.4 Ga granitoids in the Quanji Massif, NW China[J]. Journal of Asian Earth Sciences, 2019, 172: 221-242. doi: 10.1016/j.jseaes.2018.09.011 |
[50] | Wang C, Li R S, Li M, et al. Palaeoproterozoic magmatic-metamorphic history of the Quanji Massif, Northwest China: implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?[J]. International Geology Review, 2015, 57(13): 1-19. |
[51] | 路增龙, 张建新, 毛小红, 等. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩: 岩石学、锆石U-Pb年代学和Lu-Hf同位素证据[J]. 岩石学报, 2017, 33(12): 3815-3828. |
[52] | Yu S Y, Zhang J X, Li S Z, et al. Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Respond to assembly of the Columbia supercontinent[J]. Precambrian Research, 2017, 291: 42-62. doi: 10.1016/j.precamres.2017.01.016 |
[53] | He C, Gong S L, Wang L, et al. Protracted post-collisional magmatism during plate subduction shutdown in early Paleoproterozoic: Insights from post-collisional granitoid suite in NW China[J]. Gondwana Research, 2018, 55: 92-111. doi: 10.1016/j.gr.2017.11.009 |
[54] | 张建新, 万渝生, 许志琴, 等. 柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代[J]. 岩石学报, 2001, 17(3): 453-458. |
[55] | 王勤燕, 陈能松, 李晓彦, 等. 全吉地块基底达肯大坂岩群和热事件的LA-ICPMS锆石U-Pb定年[J]. 科学通报, 2008, 53(14): 1693-1701. |
[56] | Chen N S, Gong S L, Sun M, et al. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 367-376. |
[57] | Chen N S, Liao F X, Wang L, et al. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent[J]. Precambrian Research, 2013, 228: 102-116. doi: 10.1016/j.precamres.2013.01.013 |
[58] | 张璐, 廖梵汐, 巴金, 等. 全吉地块花岗片麻岩中镁铁质岩包体的矿物演化和锆石定年与古元古代区域变质作用[J]. 地学前缘, 2011, 18(2): 79-84. |
[59] | 于凤池, 魏刚锋, 孙继东. 黑色岩系同构造金矿床成矿模式——以滩间山金矿床为例[M]. 西安: 西北大学出版社, 1994: 130. |
[60] | 辛后田, 郝国杰, 王惠初, 等. 柴北缘前震旦纪地质系统的新认识[J]. 前寒武纪研究进展, 2002, 25(2): 113-119. |
[61] | 曹泊, 闫臻, 付长垒, 等. 柴北缘赛坝沟增生杂岩组成与变形特征[J]. 岩石学报, 2019, 35(4): 1015-1032. |
[62] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt peridotite interactions in the trans-North China Orogen: U-Pb Dating, Hf Isotopes and trace elements in zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082 |
[63] | Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-77. |
[64] | 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 |
[65] | Sláma J, Košler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005 |
[66] | Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324. |
[67] | Blichert Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258. |
[68] | Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9 |
[69] | Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399: 252-255. doi: 10.1038/20426 |
[70] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[71] | Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0 |
[72] | 张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9): 959-965. |
[73] | Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070 |
[74] | Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897. doi: 10.1038/nature03162 |
[75] | Gong S L, Chen N S, Geng H Y, et al. Zircon Hf isotopes and geochemistry of the early paleoproterozoic high-Sr low-Y quartz-diorite in the Quanji massif, NW China: Crustal growth and tectonic implications[J]. Journal of Earth Science, 2014, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2 |
[76] | 肖庆辉, 卢欣祥, 王菲, 等. 柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J]. 中国科学(D辑), 2003, 33(12): 1193-1200. |
[77] | 陆松年, 于海峰, 李怀坤, 等. "中央造山带"早古生代缝合带及构造分区概述[J]. 地质通报, 2006, 25(12): 1368-1380. |
[78] | Chen N S, Zhang L, Sun M, et al. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history[J]. Journal of Asian Earth Sciences, 2012, 54/55: 110-130. doi: 10.1016/j.jseaes.2012.04.006 |
[79] | 黄婉, 张璐, 巴金, 等. 柴达木地块北缘全吉地块钾长石浅粒岩碎屑锆石LA-ICP-MS U-Pb定年——对达肯大坂岩群时代的约束[J]. 地质通报, 2011, 30(9): 1353-1359. |
[80] | 于胜尧, 张建新. 柴北缘都兰地区片麻岩的起源及形成时代: 锆石U-Pb年代学、REE和Hf同位素的证据[J]. 岩石学报, 2010, 26(7): 2083-2098. |
Tectonic framework of the Central Orogenic Belt, location of the North Qaidam belt(a)and geological map of the North Qaidam belt and adjacent areas(b)
Geological map of the Tuomoerrite area
Field and microscope photographs of gneiss and amphibolite in the Tuomoerrite area
Cathodoluminescence images of zircons from gneiss(a)and amphibolite(b) in the Tuomoerrite area
LA-ICP-MS U-Pb concordia diagrams of zircons from gneiss(a)and amphibolite(b) in the Tuomoerrite area
Major and trace elements compositions of gneiss in the Tuomoerrite area
Y-Sr/Y(a)and YbN-(La/Yb)N (b)discrimination diagrams for adakites
Zircon εHf(t)vs.age(a)and εNd(t)vs.(87Sr/86Sr)t(b)diagrams of the Paleoproterozic gneisses in the Tuomoerrite area
(Cr+Ni)vs.SiO2 diagram of the Paleoproterozic gneisses