2021 Vol. 40, No. 8
Article Contents

FU Changlei, YAN Zhen, WANG Bingzhang, CHEN Lei, LI Junhui. Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture[J]. Geological Bulletin of China, 2021, 40(8): 1215-1230.
Citation: FU Changlei, YAN Zhen, WANG Bingzhang, CHEN Lei, LI Junhui. Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture[J]. Geological Bulletin of China, 2021, 40(8): 1215-1230.

Discovery of the Paleoproterozoic metamorphic basement in the Tuomoerrite area of North Qaidam: Constraint on the location of Early Paleozoic suture

  • The Paleoproterozoic gneiss and amphibolite were recognized in the Tuomoerrite area, eastern part of the North Qaidam ultra-high pressure metamorphic belt.Their tectonic affinities have significance for the understanding of regional tectonic framework.In the Tuomoerrite area, there are abundant early Paleozoic volcano-sedimentary rocks, ophiolitic rocks and intrusives, with minor gneiss and amphibolite lens discovered in the northeast part.The protoliths of gneiss and amphibolite are granidiorite and basic rock respectively.LA-ICP-MS U-Pb dating of zircon from gneiss and amphibolite yields ages of 2413±28 Ma(upper intercept age, n=29, MSWD=2.3), 1966±46 Ma(weighted mean 207Pb/206Pb age, n=4, MSWD=1.7), and 1922±22 Ma(upper intercept age, n=29, MSWD=1.3) respectively.Combined with cathodoluminescence images of zircon, 2413±28 Ma represents the magmatic crystallization age of the protolith of the gneiss.1966±46 Ma and 1922±22 Ma represent the metamorphic ages of the gneiss and amphibolite respectively.The gneiss shows typical adakitic geochemical feature, with high Sr, low Y, MgO, Cr, and Ni.The magmatic zircons have εHf(t) values between -0.8 and +4.0 and yield two-stage Hf model ages ranging from 2704 Ma to 2965 Ma.They also have positive εNd(t) ranging from +0.8 to +1.6.These geochemical and isotopic characteristics indicate that the gneisses were likely formed by partial melting of thickened mafic lower-crust.The rock assemblage, geochemical features and ages of these metamorphic rocks are consistent with those of the Delingha Complex to the north, indicating that they belong to the northern Oulongbuluke block rather than the North Qaidam belt.This understanding further constrains that the suture of the North Qaidam belt lies between the Saibagou ophiolite and the newly recognized Paleoproterozoic metamorphic rocks.

  • 加载中
  • [1] 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1): 1-11.

    Google Scholar

    [2] 许志琴, 杨经绥, 李海兵, 等. 中央造山带早古生代地体构架与高压/超高压变质带的形成[J]. 地质学报, 2006, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002

    CrossRef Google Scholar

    [3] Yin A, Manning C E, Lovera O, et al. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure(UHP) metamorphic rocks in the northern Tibetan Plateau, northwest China[J]. International Geology Review, 2007, 49: 681-716. doi: 10.2747/0020-6814.49.8.681

    CrossRef Google Scholar

    [4] 张雪亭, 杨生德. 青海省板块构造研究1: 100万青海省大地构造说明书[M]. 北京: 地质出版社, 2007.

    Google Scholar

    [5] 张建新, 于胜尧, 李云帅, 等. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用[J]. 岩石学报, 2015, 31(12): 3531-3554.

    Google Scholar

    [6] Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011

    CrossRef Google Scholar

    [7] 杨经绥, 张建新, 孟繁聪, 等. 中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨[J]. 地学前缘, 2003, 10(3): 291-314. doi: 10.3321/j.issn:1005-2321.2003.03.026

    CrossRef Google Scholar

    [8] 张贵宾, 宋述光, 张立飞, 等. 柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义[J]. 岩石学报, 2005, 21(4): 1049-1058.

    Google Scholar

    [9] 陈丹玲, 孙勇, 刘良, 等. 柴北缘野马滩超高压地体的成因——年代学研究结果的约束[J]. 西北大学学报(自然科学版), 2009, 39(4): 631-638.

    Google Scholar

    [10] 张建新, 孟繁聪, 李金平, 等. 柴达木北缘榴辉岩中的柯石英及其意义[J]. 科学通报, 2009, (5): 618-623.

    Google Scholar

    [11] Zhang J X, Yu S Y, Mattinson C G. Early Paleozoic polyphase metamorphism in northern Tibet, China[J]. Gondwana Research, 2017, 41: 267-289. doi: 10.1016/j.gr.2015.11.009

    CrossRef Google Scholar

    [12] Song S G, Niu Y L, Zhang G B, et al. Two epochs of eclogite metamorphism link 'cold' oceanic subduction and 'hot' continental subduction, the North Qaidam UHP belt, NW China[C]//Zhang L F, Zhang Z M, Schertl H P, et al. HP-UHP Metamorphism and Tectonic Evolution of Orogenic Belts. London: Geological Society of London, Special Publications, 2019, 474: 275-289.

    Google Scholar

    [13] Zhang C, Zhang L F, Roermund H V, et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4): 752-767. doi: 10.1016/j.jseaes.2011.04.002

    CrossRef Google Scholar

    [14] 陈鑫, 郑有业, 许荣科, 等. 柴北缘鱼卡榴辉岩型金红石矿床金红石矿物学、元素地球化学及成因[J]. 岩石学报, 2018, 34(6): 1685-1703.

    Google Scholar

    [15] Ren Y F, Chen D L, Kelsey D E, et al. Metamorphic evolution of a newly identified Mesoproterozoic oceanic slice in the Yuka terrane and its implications for a multi-cyclic orogenic history of the North Qaidam UHPM belt[J]. Journal of Metamorphic Geology, 2018, 36(4): 463-488. doi: 10.1111/jmg.12300

    CrossRef Google Scholar

    [16] Yu S Y, Li S Z, Zhang J X, et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China[J]. Earth-Science Reviews, 2019, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016

    CrossRef Google Scholar

    [17] Yu S Y, Li S Z, Zhang J X, et al. Linking high-pressure mafic granulite, TTG-like(tonalitic-trondhjemitic) leucosome and pluton, and crustal growth during continental collision[J]. Geological Society of America Bulletin, 2019, 131(3/4): 572-586.

    Google Scholar

    [18] Zhou G S, Zhang J X, Yu S Y, et al. Metamorphic evolution of eclogites and associated metapelites from the Yuka terrane in the North Qaidam ultrahigh pressure metamorphic belt, NW China: Constraints from phase equilibrium modeling[J]. Journal of Asian Earth Sciences, 2019, 173: 161-175. doi: 10.1016/j.jseaes.2019.01.017

    CrossRef Google Scholar

    [19] Xiao W J, Windley B F, Yong Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 323-333.

    Google Scholar

    [20] Xia L Q, Li X M, Yu J Y, et al. Mid-late Neoproterozoic to early paleozoic volcanism and tectonic evolution of the Qilianshan, NW China[J]. Geo. Res. J., 2016, 9/12: 1-41.

    Google Scholar

    [21] Fu D, Kusky T, Wilde S A, et al. Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis[J]. GSA Bulletin, 2019, 131(5/6): 1031-1056.

    Google Scholar

    [22] Fu C L, Yan Z, Wang Z Q, et al. Lajishankou Ophiolite Complex: Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt[J]. Tectonics, 2018, 37(5): 1321-1346. doi: 10.1029/2017TC004740

    CrossRef Google Scholar

    [23] Fu C L, Yan Z, Aitchison J C, et al. Multiple subduction processes of the Proto-Tethyan Ocean: Implication from Cambrian intrusions along the North Qilian suture zone[J]. Gondwana Research, 2020, 87: 207-223. doi: 10.1016/j.gr.2020.06.007

    CrossRef Google Scholar

    [24] Yan Z, Fu C L, Aitchison J C, et al. Retro-foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau[J]. Tectonics, 2019, 38(12): 4229-4248. doi: 10.1029/2019TC005560

    CrossRef Google Scholar

    [25] 高延林. 青藏高原古洋壳恢复与重建问题讨论[J]. 青海地质, 2000, 9(1): 1-8.

    Google Scholar

    [26] 潘彤. 青海成矿单元划分[J]. 地球科学与环境学报, 2017, 39(1): 16-33. doi: 10.3969/j.issn.1672-6561.2017.01.002

    CrossRef Google Scholar

    [27] 潘彤, 王福德. 初论青海省金矿成矿系列[J]. 黄金科学技术, 2018, 26(4): 423-430.

    Google Scholar

    [28] 青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991: 1-662.

    Google Scholar

    [29] 庄玉军, 辜平阳, 李培庆, 等. 柴北缘构造带欧龙布鲁克地块西北缘辉长岩脉地球化学、年代学及Hf同位素特征[J]. 地质通报, 2019, 38(11): 1801-1812.

    Google Scholar

    [30] 林成贵, 郑有业, 程志中, 等. 柴北缘鱼卡榴辉岩型金红石矿床成矿物理条件[J]. 地质通报, 2019, 38(5): 866-883.

    Google Scholar

    [31] 赖绍聪, 邓晋福, 赵海玲. 柴达木北缘古生代蛇绿岩及其构造意义[J]. 现代地质, 1996, 10(1): 18-28.

    Google Scholar

    [32] 史仁灯, 杨经绥, 吴才来. 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J]. 岩石矿物学杂志, 2003, 22(3): 229-236. doi: 10.3969/j.issn.1000-6524.2003.03.004

    CrossRef Google Scholar

    [33] 王惠初, 陆松年, 袁桂邦, 等. 柴达木盆地北缘滩间山群的构造属性及形成时代[J]. 地质通报, 2003, 22(7): 487-493.

    Google Scholar

    [34] 赵凤清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学[J]. 地质通报, 2003, 22(1): 28-31.

    Google Scholar

    [35] 吴才来, 郜源红, 吴锁平, 等. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J]. 中国科学(D辑), 2008, 38(8): 930-949. doi: 10.3321/j.issn:1006-9267.2008.08.002

    CrossRef Google Scholar

    [36] 李峰, 吴志亮, 李保珠. 柴达木北缘滩间山群时代及其地质意义[J]. 大地构造与成矿学, 2007, 31(2): 226-233. doi: 10.3969/j.issn.1001-1552.2007.02.012

    CrossRef Google Scholar

    [37] 高晓峰, 校培喜, 贾群子. 滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J]. 地质学报, 2011, 85(9): 1452-1463.

    Google Scholar

    [38] 夏文静, 牛漫兰, 闫臻, 等. 柴北缘牦牛山地区牦牛山组沉积相组合特征[J]. 地质学报, 2014, 88(5): 943-955.

    Google Scholar

    [39] 张孝攀, 王权锋, 惠洁, 等. 柴北缘滩间山群火山岩岩石化学特征及构造环境[J]. 矿物岩石, 2015, 35(1): 18-26. doi: 10.3969/j.issn.1007-2802.2015.01.002

    CrossRef Google Scholar

    [40] 宋述光, 王梦珏, 王潮, 等. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长[J]. 中国科学: 地球科学, 2015, 45(7): 916-940.

    Google Scholar

    [41] 朱小辉, 陈丹玲, 王超, 等. 柴达木盆地北缘新元古代-早古生代大洋的形成发展和消亡[J]. 地质学报, 2015, 89(2): 234-251.

    Google Scholar

    [42] Lu Z L, Zhang J X, Mattinson C. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China[J]. Journal of Metamorphic Geology, 2018, 36: 653-666. doi: 10.1111/jmg.12305

    CrossRef Google Scholar

    [43] Li X C, Niu M L, Yakymchuk C, et al. A paired metamorphic belt in a subduction-to-collision orogen: An example from the South Qilian-North Qaidam orogenic belt, NW China[J]. Journal of Metamorphic Geology, 2019, 37(4): 479-508. doi: 10.1111/jmg.12468

    CrossRef Google Scholar

    [44] 陆松年, 王惠初, 李怀坤, 等. 柴达木盆地北缘"达肯大坂群"的再厘定[J]. 地质通报, 2002, 21(1): 19-23.

    Google Scholar

    [45] 李怀坤, 陆松年, 王惠初, 等. 青海柴北缘新元古代超大陆裂解的地质记录-全吉群[J]. 地质调查与研究, 2003, 26(1): 27-37. doi: 10.3969/j.issn.1672-4135.2003.01.006

    CrossRef Google Scholar

    [46] 陈能松, 夏小平, 李晓彦, 等. 柴北缘花岗片麻岩的岩浆作用计时和前寒武纪地壳增长的锆石U-Pb年龄和Hf同位素证据[J]. 岩石学报, 2007, 23(2): 501-512.

    Google Scholar

    [47] 郝国杰, 陆松年, 辛后田, 等. 青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件[J]. 吉林大学学报(地球科学版), 2004, 34(4): 495-501.

    Google Scholar

    [48] Gong S L, Chen N S, Wang Q Y, et al. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance: LA-ICPMS U-Pb zircon geochronology and geochemistry[J]. Gondwana Research, 2012, 21: 152-166. doi: 10.1016/j.gr.2011.07.011

    CrossRef Google Scholar

    [49] Gong S L, He C, Wang X C, et al. No plate tectonic shutdown in the early Paleoproterozoic: Constraints from the ca. 2.4 Ga granitoids in the Quanji Massif, NW China[J]. Journal of Asian Earth Sciences, 2019, 172: 221-242. doi: 10.1016/j.jseaes.2018.09.011

    CrossRef Google Scholar

    [50] Wang C, Li R S, Li M, et al. Palaeoproterozoic magmatic-metamorphic history of the Quanji Massif, Northwest China: implications for a single North China-Quanji-Tarim craton within the Columbia supercontinent?[J]. International Geology Review, 2015, 57(13): 1-19.

    Google Scholar

    [51] 路增龙, 张建新, 毛小红, 等. 柴北缘欧龙布鲁克地块东段古元古代基性麻粒岩: 岩石学、锆石U-Pb年代学和Lu-Hf同位素证据[J]. 岩石学报, 2017, 33(12): 3815-3828.

    Google Scholar

    [52] Yu S Y, Zhang J X, Li S Z, et al. Paleoproterozoic granulite-facies metamorphism and anatexis in the Oulongbuluke Block, NW China: Respond to assembly of the Columbia supercontinent[J]. Precambrian Research, 2017, 291: 42-62. doi: 10.1016/j.precamres.2017.01.016

    CrossRef Google Scholar

    [53] He C, Gong S L, Wang L, et al. Protracted post-collisional magmatism during plate subduction shutdown in early Paleoproterozoic: Insights from post-collisional granitoid suite in NW China[J]. Gondwana Research, 2018, 55: 92-111. doi: 10.1016/j.gr.2017.11.009

    CrossRef Google Scholar

    [54] 张建新, 万渝生, 许志琴, 等. 柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代[J]. 岩石学报, 2001, 17(3): 453-458.

    Google Scholar

    [55] 王勤燕, 陈能松, 李晓彦, 等. 全吉地块基底达肯大坂岩群和热事件的LA-ICPMS锆石U-Pb定年[J]. 科学通报, 2008, 53(14): 1693-1701.

    Google Scholar

    [56] Chen N S, Gong S L, Sun M, et al. Precambrian evolution of the Quanji Block, northeastern margin of Tibet: Insights from zircon U-Pb and Lu-Hf isotope compositions[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 367-376.

    Google Scholar

    [57] Chen N S, Liao F X, Wang L, et al. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China Cratons and implications for assembly of the Columbia supercontinent[J]. Precambrian Research, 2013, 228: 102-116. doi: 10.1016/j.precamres.2013.01.013

    CrossRef Google Scholar

    [58] 张璐, 廖梵汐, 巴金, 等. 全吉地块花岗片麻岩中镁铁质岩包体的矿物演化和锆石定年与古元古代区域变质作用[J]. 地学前缘, 2011, 18(2): 79-84.

    Google Scholar

    [59] 于凤池, 魏刚锋, 孙继东. 黑色岩系同构造金矿床成矿模式——以滩间山金矿床为例[M]. 西安: 西北大学出版社, 1994: 130.

    Google Scholar

    [60] 辛后田, 郝国杰, 王惠初, 等. 柴北缘前震旦纪地质系统的新认识[J]. 前寒武纪研究进展, 2002, 25(2): 113-119.

    Google Scholar

    [61] 曹泊, 闫臻, 付长垒, 等. 柴北缘赛坝沟增生杂岩组成与变形特征[J]. 岩石学报, 2019, 35(4): 1015-1032.

    Google Scholar

    [62] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt peridotite interactions in the trans-North China Orogen: U-Pb Dating, Hf Isotopes and trace elements in zircons from Mantle Xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [63] Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-77.

    Google Scholar

    [64] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [65] Sláma J, Košler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [66] Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.

    Google Scholar

    [67] Blichert Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

    Google Scholar

    [68] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [69] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399: 252-255. doi: 10.1038/20426

    CrossRef Google Scholar

    [70] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.

    Google Scholar

    [71] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [72] 张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9): 959-965.

    Google Scholar

    [73] Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070

    CrossRef Google Scholar

    [74] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432: 892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [75] Gong S L, Chen N S, Geng H Y, et al. Zircon Hf isotopes and geochemistry of the early paleoproterozoic high-Sr low-Y quartz-diorite in the Quanji massif, NW China: Crustal growth and tectonic implications[J]. Journal of Earth Science, 2014, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2

    CrossRef Google Scholar

    [76] 肖庆辉, 卢欣祥, 王菲, 等. 柴达木北缘鹰峰环斑花岗岩的时代及地质意义[J]. 中国科学(D辑), 2003, 33(12): 1193-1200.

    Google Scholar

    [77] 陆松年, 于海峰, 李怀坤, 等. "中央造山带"早古生代缝合带及构造分区概述[J]. 地质通报, 2006, 25(12): 1368-1380.

    Google Scholar

    [78] Chen N S, Zhang L, Sun M, et al. U-Pb and Hf isotopic compositions of detrital zircons from the paragneisses of the Quanji Massif, NW China: Implications for its early tectonic evolutionary history[J]. Journal of Asian Earth Sciences, 2012, 54/55: 110-130. doi: 10.1016/j.jseaes.2012.04.006

    CrossRef Google Scholar

    [79] 黄婉, 张璐, 巴金, 等. 柴达木地块北缘全吉地块钾长石浅粒岩碎屑锆石LA-ICP-MS U-Pb定年——对达肯大坂岩群时代的约束[J]. 地质通报, 2011, 30(9): 1353-1359.

    Google Scholar

    [80] 于胜尧, 张建新. 柴北缘都兰地区片麻岩的起源及形成时代: 锆石U-Pb年代学、REE和Hf同位素的证据[J]. 岩石学报, 2010, 26(7): 2083-2098.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(1678) PDF downloads(10) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint