Citation: | HU Peiyuan, ZHAI Qingguo, TANG Yue, ZHU Zhicai, WANG Wei. Geochemistry, zircon U-Pb age, Lu-Hf isotopes and tectonic setting of the Early Paleozoic gneissic granites from the Nyainrong microcontinent, Tibet Plateau[J]. Geological Bulletin of China, 2021, 40(8): 1203-1214. |
The geochemistry of the Cambrian gneissic granite from the Nyainrong microcontinent, central Tibet, and its zircon LA-ICP-MS U-Pb ages and Hf isotope data are reported.The granite was formed at 516±3 Ma(n=20, MSWD=1.60), and belongs to high-K calc-alkaline I-type.It is characterized by negative Eu anomaly and right-dip chondrite-normalized rare-earth element patterns, enrichment of Rb, Th, and Pb, and depletion of Ba, Nb, Ta, Sr, P, and Ti.It exhibits negative zircon εHf(t) values of -3.0~-0.1 and relatively high Mg# values of 32~47, and yields old zircon Hf model age of 1472~1659 Ma, suggesting a magma source of Proterozoic sedimentary materials modified by mantle-derived magma.Based on the above study results and regional geological setting, it is suggested that the Cambrian gneissic granite from the Nyainrong microcontinent could be attributed to one part of the Andean-type magmatic arc along the northern margin of the Gondwana supercontinent.
[1] | 许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非-早古生代造山事件年龄纪录[J]. 岩石学报, 2005, 21(1): 1-12. |
[2] | Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Letters, 2007, 255: 70-84. doi: 10.1016/j.epsl.2006.12.006 |
[3] | 张泽明, 王金丽, 沈昆, 等. 环冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24: 1627-1637. |
[4] | 王晓先, 张进江, 杨雄英, 等. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J]. 地学前缘, 2011, 18: 127-138. |
[5] | Garzanti E, Casnesi R, Jadoul F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986, 48: 237-265. doi: 10.1016/0037-0738(86)90032-1 |
[6] | Stöcklin J. Geology of Nepal and its regional frame[J]. Geological Society Journal, 1980, 137: 1-34. doi: 10.1144/gsjgs.137.1.0001 |
[7] | Kumar R, Shah A N, Bingham D K. Positive evidence of a Precambrian tectonic phase in central Napal, Himalaya[J]. Journal of the Geological Society of India, 1978, 19: 519-522. |
[8] | Valdiya K S, Gupta V J. A contribution to the geology of Northeastern Kumaun, with special reference to the Hercunian gap in Tethys Himalaya[J]. Himalaya Geology, 1972, 2: 1-33. |
[9] | Gupta V J. Indian Precambrian stratigraphy[M]. Hindustan Publishing Corporation Printing Press, Delhi(India), 1977: 1-333. |
[10] | 刘文灿, 梁定益, 王克友. 藏南康马地区奥陶系的发现及其地质意义[J]. 地学前缘, 2002, 9(4): 247-248. doi: 10.3321/j.issn:1005-2321.2002.04.026 |
[11] | Gehrels G, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogeny[J]. Tectonics, 2011, 30: 1-27. |
[12] | Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123: 585-600. doi: 10.1130/B30154.1 |
[13] | 胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37: 1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019 |
[14] | Guynn J, Kapp P, Gehrels G, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 2012, 43(1): 23-50. doi: 10.1016/j.jseaes.2011.09.003 |
[15] | Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic An-dean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328(18): 290-308. |
[16] | 计文化, 陈守建, 赵振明, 等. 西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义[J]. 地质通报, 2009, 28(10): 1350-1354. |
[17] | 解超明, 李才, 苏犁, 等. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年[J]. 地质通报, 2010, 29(12): 1737-1744. |
[18] | Zhang Z M, Dong X, Liu F, et al. Tectonic Evolution of the Amdo Terrane, Central Tibet: Petrochemistry and Zircon U-Pb Geochronology[J]. The Journal of Geology, 2012, 120: 431-451. doi: 10.1086/665799 |
[19] | 解超明, 李才, 苏犁, 等. 藏北聂荣微陆块泛非-早古生代构造热事件: 年代学与地球化学制约[J]. 中国科学: 地球科学, 2014, 44(3): 414-428. |
[20] | Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 |
[21] | 李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54(1): 105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012 |
[22] | 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 |
[23] | Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69. |
[24] | Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. |
[25] | Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126. |
[26] | Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220/223: 318-338. doi: 10.1016/j.lithos.2014.12.020 |
[27] | LeBas M J, Lemaitre R W, Streckeisen A, et al. A chemical classification of volcanic-rocks based on the total alkali silica diagram[J]. Journal of Petrology, 1986, 27: 745-750. doi: 10.1093/petrology/27.3.745 |
[28] | Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174. |
[29] | Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1-26. doi: 10.1017/S0263593300007720 |
[30] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. J. Geol. Soc. London, Spec. Publ., 1989, 42: 313-345. |
[31] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2007, 8: 1589-1604. |
[32] | Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt, West Greenland[J]. Precambrian Research, 2003, 126(3/4): 197-218. |
[33] | Hu P Y, Li C, Wu Y W, et al. Opening of the Longmu Co-Shuanghu-Lancangjiang ocean: constraints from plagiogranites[J]. Chinese Science Bulletin, 2014, 59(25): 3188-3199. doi: 10.1007/s11434-014-0434-z |
[34] | Wolf M B, London D. Apatite dissolution into peraluminous haplogranite melts: an experimental study of solubilities and mechanisms[J]. Geochimica et Cosmochimica Acta, 1994, 58: 4127-4145. doi: 10.1016/0016-7037(94)90269-0 |
[35] | Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 2007, 315(5814): 980-983. doi: 10.1126/science.1136154 |
[36] | Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3 |
[37] | Liu Y M, Xie C M, Li C, et al. Breakup of the northern margin of Gondwana through lithospheric delamination: Evidence from the Tibetan Plateau[J]. GSA Bulletin, 2019, 131(3/4): 675-697. |
[38] | Wang H T, Zhai Q G, Hu P Y, et al. Early Paleozoic granitic rocks of the South Qiangtang Terrane, northern Tibetan Plateau: implications for subduction in the Proto-(Paleo-) Tethys Ocean[J]. Journal of Asian Earth Sciences, 2020, 204: 104579. doi: 10.1016/j.jseaes.2020.104579 |
[39] | Hu P Y, Li C, Wang M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Sciences, 2013, 77: 91-107. doi: 10.1016/j.jseaes.2013.08.015 |
[40] | Miller C, Thöni M, Frank W, et al. The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138: 237-251. doi: 10.1017/S0016756801005283 |
[41] | Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages[J]. Geology, 1998, 148: 115-136. |
[42] | Quigley M C, Yu L J, Gregory C, et al. U-Pb SHRIMP zircon geochronology and T-t-p history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 446: 97-113. doi: 10.1016/j.tecto.2007.11.004 |
[43] | 时超, 李荣社, 何世平, 等. 藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(12): 1745-1753. |
[44] | 林仕良, 丛峰, 高永娟, 等. 腾冲地块东南缘高黎贡山群片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 258-263. |
[45] | 杨学俊, 贾小川, 熊昌利, 等. 滇西高黎贡山南段公养河群变质基性火山岩的锆石U-Pb年龄及其意义[J]. 地质通报, 2012, 31(2/3): 264-276. |
[46] | 刘倚胜, 叶培胜, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2/3): 250-257. |
[47] | 熊昌利, 贾小川, 杨学俊, 等. 滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境[J]. 地质通报, 2012, 31(2/3): 277-286. |
[48] | 马泽良, 蔡志慧, 戚学祥, 等. 保山地体新元古代-早古生代沉积岩碎屑锆石年代学及其构造意义[J]. 地质通报, 2019, 38(4): 546-561. |
[49] | 孙载波, 胡绍斌, 周坤, 等. 滇西南勐海布朗山奥陶纪花岗岩锆石U-Pb年龄、Hf同位素组成特征及其构造意义[J]. 地质通报, 2018, 37(11): 2044-2054. |
[50] | Gehrels G E, Decelles P G, Martin A. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2003, 13: 4-9. |
[51] | Ramezani J, Tucker R D. The Saghand Region, Central Iron: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics[J]. American Journal of Science, 2003, 303: 622-665. doi: 10.2475/ajs.303.7.622 |
[52] | Hassanzadeh J, Stockli D F, Horton B K. U-Pb zircon geochronology of upper Neoproterozoic-Early Cambrian granitoids in Iran: Implica-tions for paleogeography, metallogeny, and exhumation history of Iranian basement[J]. Tectonophysics, 2008, 451: 71-96. doi: 10.1016/j.tecto.2007.11.062 |
[53] | Ustaömer P A, Ustaömer T, Collins A S, et al. Cadomian(Ediacaran-Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: magmatism along the developing northern margin of Gondwana[J]. Tectonophysics, 2009, 473: 99-112. doi: 10.1016/j.tecto.2008.06.010 |
[54] | Kusky T M, Abdelsalam M, Stern R J, et al. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 2003, 123: 81-85. doi: 10.1016/S0301-9268(03)00062-7 |
[55] | Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotope constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36: 168-182. doi: 10.1016/j.jseaes.2009.05.004 |
[56] | Harris N B W, Pearce J A, Tindle A G, et al. Geochemical characteristics of collision zone magmatism[J]. Geological Society Special Publication, London, 1986, 19: 67-81. doi: 10.1144/GSL.SP.1986.019.01.04 |
[57] | Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285. doi: 10.1146/annurev.ea.23.050195.001343 |
Simplified tectonic map of the central Tibetan Plateau(a)and geological map of the Nyainrong microcontinent(b)
Field characteristics(a)and micrographs(crossed polarizers)(b)of the Early Paleozoic gneissic granite from the Nyainrong microcontinent
SiO2-(Na2O+K2O)(a), SiO2-K2O(b), A/CNK-A/NK(c), Al2O3/TiO2-CaO/Na2O(d), Rb/Sr-Rb/Ba(e) and SiO2-Mg#(f)diagrams of the Early Paleozoic gneissic granite from the Nyainrong microcontinent
Harker diagrams of the Early Paleozoic gneissic granite from the Nyainrong microcontinent
Chondrite-normalized rare earth element patterns(a)and primitive mantle-normalized spider diagrams(b)for the Early Paleozoic gneissic granite from the Nyainrong microcontinent
Typical cathodoluminescence images(a), U-Pb concordia diagram(b), and 206Pb/238U age data(c)of the zircons from the Early Paleozoic gneissic granite in the Nyainrong microcontinent
Plots of select mobile, immobile, and transition elements vs.Zr for the Early Paleozoic gneissic granite from the Nyainrong microcontinent
Y一Nb(a), (Y+Nb)-Rb(b) and Rb/30-Hf-Ta×3(c) tectonic setting discrimination diagrams of the Early Paleozoic gneissic granite from the Nyainrong microcontinent