2021 Vol. 40, No. 8
Article Contents

HU Peiyuan, ZHAI Qingguo, TANG Yue, ZHU Zhicai, WANG Wei. Geochemistry, zircon U-Pb age, Lu-Hf isotopes and tectonic setting of the Early Paleozoic gneissic granites from the Nyainrong microcontinent, Tibet Plateau[J]. Geological Bulletin of China, 2021, 40(8): 1203-1214.
Citation: HU Peiyuan, ZHAI Qingguo, TANG Yue, ZHU Zhicai, WANG Wei. Geochemistry, zircon U-Pb age, Lu-Hf isotopes and tectonic setting of the Early Paleozoic gneissic granites from the Nyainrong microcontinent, Tibet Plateau[J]. Geological Bulletin of China, 2021, 40(8): 1203-1214.

Geochemistry, zircon U-Pb age, Lu-Hf isotopes and tectonic setting of the Early Paleozoic gneissic granites from the Nyainrong microcontinent, Tibet Plateau

  • The geochemistry of the Cambrian gneissic granite from the Nyainrong microcontinent, central Tibet, and its zircon LA-ICP-MS U-Pb ages and Hf isotope data are reported.The granite was formed at 516±3 Ma(n=20, MSWD=1.60), and belongs to high-K calc-alkaline I-type.It is characterized by negative Eu anomaly and right-dip chondrite-normalized rare-earth element patterns, enrichment of Rb, Th, and Pb, and depletion of Ba, Nb, Ta, Sr, P, and Ti.It exhibits negative zircon εHf(t) values of -3.0~-0.1 and relatively high Mg# values of 32~47, and yields old zircon Hf model age of 1472~1659 Ma, suggesting a magma source of Proterozoic sedimentary materials modified by mantle-derived magma.Based on the above study results and regional geological setting, it is suggested that the Cambrian gneissic granite from the Nyainrong microcontinent could be attributed to one part of the Andean-type magmatic arc along the northern margin of the Gondwana supercontinent.

  • 加载中
  • [1] 许志琴, 杨经绥, 梁凤华, 等. 喜马拉雅地体的泛非-早古生代造山事件年龄纪录[J]. 岩石学报, 2005, 21(1): 1-12.

    Google Scholar

    [2] Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Letters, 2007, 255: 70-84. doi: 10.1016/j.epsl.2006.12.006

    CrossRef Google Scholar

    [3] 张泽明, 王金丽, 沈昆, 等. 环冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 2008, 24: 1627-1637.

    Google Scholar

    [4] 王晓先, 张进江, 杨雄英, 等. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义[J]. 地学前缘, 2011, 18: 127-138.

    Google Scholar

    [5] Garzanti E, Casnesi R, Jadoul F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986, 48: 237-265. doi: 10.1016/0037-0738(86)90032-1

    CrossRef Google Scholar

    [6] Stöcklin J. Geology of Nepal and its regional frame[J]. Geological Society Journal, 1980, 137: 1-34. doi: 10.1144/gsjgs.137.1.0001

    CrossRef Google Scholar

    [7] Kumar R, Shah A N, Bingham D K. Positive evidence of a Precambrian tectonic phase in central Napal, Himalaya[J]. Journal of the Geological Society of India, 1978, 19: 519-522.

    Google Scholar

    [8] Valdiya K S, Gupta V J. A contribution to the geology of Northeastern Kumaun, with special reference to the Hercunian gap in Tethys Himalaya[J]. Himalaya Geology, 1972, 2: 1-33.

    Google Scholar

    [9] Gupta V J. Indian Precambrian stratigraphy[M]. Hindustan Publishing Corporation Printing Press, Delhi(India), 1977: 1-333.

    Google Scholar

    [10] 刘文灿, 梁定益, 王克友. 藏南康马地区奥陶系的发现及其地质意义[J]. 地学前缘, 2002, 9(4): 247-248. doi: 10.3321/j.issn:1005-2321.2002.04.026

    CrossRef Google Scholar

    [11] Gehrels G, Kapp P, DeCelles P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogeny[J]. Tectonics, 2011, 30: 1-27.

    Google Scholar

    [12] Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123: 585-600. doi: 10.1130/B30154.1

    CrossRef Google Scholar

    [13] 胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37: 1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019

    CrossRef Google Scholar

    [14] Guynn J, Kapp P, Gehrels G, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 2012, 43(1): 23-50. doi: 10.1016/j.jseaes.2011.09.003

    CrossRef Google Scholar

    [15] Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic An-dean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328(18): 290-308.

    Google Scholar

    [16] 计文化, 陈守建, 赵振明, 等. 西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义[J]. 地质通报, 2009, 28(10): 1350-1354.

    Google Scholar

    [17] 解超明, 李才, 苏犁, 等. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年[J]. 地质通报, 2010, 29(12): 1737-1744.

    Google Scholar

    [18] Zhang Z M, Dong X, Liu F, et al. Tectonic Evolution of the Amdo Terrane, Central Tibet: Petrochemistry and Zircon U-Pb Geochronology[J]. The Journal of Geology, 2012, 120: 431-451. doi: 10.1086/665799

    CrossRef Google Scholar

    [19] 解超明, 李才, 苏犁, 等. 藏北聂荣微陆块泛非-早古生代构造热事件: 年代学与地球化学制约[J]. 中国科学: 地球科学, 2014, 44(3): 414-428.

    Google Scholar

    [20] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [21] 李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54(1): 105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012

    CrossRef Google Scholar

    [22] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [23] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.

    Google Scholar

    [24] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [25] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126.

    Google Scholar

    [26] Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220/223: 318-338. doi: 10.1016/j.lithos.2014.12.020

    CrossRef Google Scholar

    [27] LeBas M J, Lemaitre R W, Streckeisen A, et al. A chemical classification of volcanic-rocks based on the total alkali silica diagram[J]. Journal of Petrology, 1986, 27: 745-750. doi: 10.1093/petrology/27.3.745

    CrossRef Google Scholar

    [28] Chappell B W, White A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174.

    Google Scholar

    [29] Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1-26. doi: 10.1017/S0263593300007720

    CrossRef Google Scholar

    [30] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. J. Geol. Soc. London, Spec. Publ., 1989, 42: 313-345.

    Google Scholar

    [31] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2007, 8: 1589-1604.

    Google Scholar

    [32] Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt, West Greenland[J]. Precambrian Research, 2003, 126(3/4): 197-218.

    Google Scholar

    [33] Hu P Y, Li C, Wu Y W, et al. Opening of the Longmu Co-Shuanghu-Lancangjiang ocean: constraints from plagiogranites[J]. Chinese Science Bulletin, 2014, 59(25): 3188-3199. doi: 10.1007/s11434-014-0434-z

    CrossRef Google Scholar

    [34] Wolf M B, London D. Apatite dissolution into peraluminous haplogranite melts: an experimental study of solubilities and mechanisms[J]. Geochimica et Cosmochimica Acta, 1994, 58: 4127-4145. doi: 10.1016/0016-7037(94)90269-0

    CrossRef Google Scholar

    [35] Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 2007, 315(5814): 980-983. doi: 10.1126/science.1136154

    CrossRef Google Scholar

    [36] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45: 29-44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [37] Liu Y M, Xie C M, Li C, et al. Breakup of the northern margin of Gondwana through lithospheric delamination: Evidence from the Tibetan Plateau[J]. GSA Bulletin, 2019, 131(3/4): 675-697.

    Google Scholar

    [38] Wang H T, Zhai Q G, Hu P Y, et al. Early Paleozoic granitic rocks of the South Qiangtang Terrane, northern Tibetan Plateau: implications for subduction in the Proto-(Paleo-) Tethys Ocean[J]. Journal of Asian Earth Sciences, 2020, 204: 104579. doi: 10.1016/j.jseaes.2020.104579

    CrossRef Google Scholar

    [39] Hu P Y, Li C, Wang M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Sciences, 2013, 77: 91-107. doi: 10.1016/j.jseaes.2013.08.015

    CrossRef Google Scholar

    [40] Miller C, Thöni M, Frank W, et al. The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138: 237-251. doi: 10.1017/S0016756801005283

    CrossRef Google Scholar

    [41] Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages[J]. Geology, 1998, 148: 115-136.

    Google Scholar

    [42] Quigley M C, Yu L J, Gregory C, et al. U-Pb SHRIMP zircon geochronology and T-t-p history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 446: 97-113. doi: 10.1016/j.tecto.2007.11.004

    CrossRef Google Scholar

    [43] 时超, 李荣社, 何世平, 等. 藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(12): 1745-1753.

    Google Scholar

    [44] 林仕良, 丛峰, 高永娟, 等. 腾冲地块东南缘高黎贡山群片麻岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2/3): 258-263.

    Google Scholar

    [45] 杨学俊, 贾小川, 熊昌利, 等. 滇西高黎贡山南段公养河群变质基性火山岩的锆石U-Pb年龄及其意义[J]. 地质通报, 2012, 31(2/3): 264-276.

    Google Scholar

    [46] 刘倚胜, 叶培胜, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2/3): 250-257.

    Google Scholar

    [47] 熊昌利, 贾小川, 杨学俊, 等. 滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境[J]. 地质通报, 2012, 31(2/3): 277-286.

    Google Scholar

    [48] 马泽良, 蔡志慧, 戚学祥, 等. 保山地体新元古代-早古生代沉积岩碎屑锆石年代学及其构造意义[J]. 地质通报, 2019, 38(4): 546-561.

    Google Scholar

    [49] 孙载波, 胡绍斌, 周坤, 等. 滇西南勐海布朗山奥陶纪花岗岩锆石U-Pb年龄、Hf同位素组成特征及其构造意义[J]. 地质通报, 2018, 37(11): 2044-2054.

    Google Scholar

    [50] Gehrels G E, Decelles P G, Martin A. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt[J]. GSA Today, 2003, 13: 4-9.

    Google Scholar

    [51] Ramezani J, Tucker R D. The Saghand Region, Central Iron: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics[J]. American Journal of Science, 2003, 303: 622-665. doi: 10.2475/ajs.303.7.622

    CrossRef Google Scholar

    [52] Hassanzadeh J, Stockli D F, Horton B K. U-Pb zircon geochronology of upper Neoproterozoic-Early Cambrian granitoids in Iran: Implica-tions for paleogeography, metallogeny, and exhumation history of Iranian basement[J]. Tectonophysics, 2008, 451: 71-96. doi: 10.1016/j.tecto.2007.11.062

    CrossRef Google Scholar

    [53] Ustaömer P A, Ustaömer T, Collins A S, et al. Cadomian(Ediacaran-Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: magmatism along the developing northern margin of Gondwana[J]. Tectonophysics, 2009, 473: 99-112. doi: 10.1016/j.tecto.2008.06.010

    CrossRef Google Scholar

    [54] Kusky T M, Abdelsalam M, Stern R J, et al. Evolution of the East African and related orogens, and the assembly of Gondwana[J]. Precambrian Research, 2003, 123: 81-85. doi: 10.1016/S0301-9268(03)00062-7

    CrossRef Google Scholar

    [55] Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotope constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36: 168-182. doi: 10.1016/j.jseaes.2009.05.004

    CrossRef Google Scholar

    [56] Harris N B W, Pearce J A, Tindle A G, et al. Geochemical characteristics of collision zone magmatism[J]. Geological Society Special Publication, London, 1986, 19: 67-81. doi: 10.1144/GSL.SP.1986.019.01.04

    CrossRef Google Scholar

    [57] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic ARC magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285. doi: 10.1146/annurev.ea.23.050195.001343

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1877) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint