Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 6
Article Contents

DU Peixin, YUAN Peng, ZHUANG Guanzheng. Research Advances in Applied Mineralogy Studies of Nanotubular Halloysite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 77-86. doi: 10.13779/j.cnki.issn1001-0076.2019.06.012
Citation: DU Peixin, YUAN Peng, ZHUANG Guanzheng. Research Advances in Applied Mineralogy Studies of Nanotubular Halloysite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 77-86. doi: 10.13779/j.cnki.issn1001-0076.2019.06.012

Research Advances in Applied Mineralogy Studies of Nanotubular Halloysite

More Information
  • Research advances on the applications of nanotubular halloysite in medicine and biomedicine, nanocomposite, environmental pollution remediation and other fields are reviewed. The research status, challenges and prospects of halloysite in these fields are mainly discussed. Owing to its unique nanotubular structure and good biocompatibility, halloysite can be used for the delivery and controlled release of drugs, bioactive molecules, cosmetics, herbicides, antioxidants, corrosion inhibitors and flame retardants, showing its great promise in drug delivery, antimicrobial materials, self-healing polymers and regenerative medicine. Thus, halloysite is regarded as a very important non-metallic mineral resource with superiority of our country. The in vivo compatibility and cytotoxicity of halloysite for humans and the application of halloysite for the delivery of drugs and bioactive molecules (e.g., small interfering RNA) are research areas that need to pay more attention and devotion.

  • 加载中
  • [1] Yuan P, Tan DY, Annabi-Bergaya F. Properties and applications of halloysite nanotubes:Recent research advances and future prospects[J]. Applied Clay Science, 2015, 112:75-93.

    Google Scholar

    [2] 袁鹏, 杜培鑫, 周军明, 等.铝硅酸盐纳米矿物的地质意义和资源价值再认识[J].岩石学报, 2019, 35:164-176. doi: 10.18654/1000-0569/2019.01.13

    CrossRef Google Scholar

    [3] 谭道永, 曲天晨, 董发勤, 等.管状埃洛石的微结构对其负载活性的制约[J].矿物学报, 2018, 38(4):437-442.

    Google Scholar

    [4] Yuan P, Southon PD, Liu ZW, et al. Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane[J]. Journal of Physical Chemistry C, 2008, 112(40):15742-15751. doi: 10.1021/jp805657t

    CrossRef Google Scholar

    [5] Lvov YM, Shchukin DG, Möhwald H, et al. Halloysite clay nanotubes for controlled release of protective agents[J]. ACS Nano, 2008, 2(5):814-820. doi: 10.1021/nn800259q

    CrossRef Google Scholar

    [6] Liu RC, Zhang B, Mei DD, et al. Adsorption of methyl violet from aqueous solution by halloysite nanotubes[J]. Desalination, 2011, 268(1-3):111-116. doi: 10.1016/j.desal.2010.10.006

    CrossRef Google Scholar

    [7] Tan DY, Yuan P, Liu D, et al. Surface modifications of halloysite[M]//Yuan P, Thill A, Annabi-Bergaya F. Nanosized tubular clay minerals. Amsterdam: Elsevier, 2016: 167-201.

    Google Scholar

    [8] 袁鹏.纳米结构矿物的特殊结构和表-界面反应性[J].地球科学, 2018, 43(5):1384-1407.

    Google Scholar

    [9] Ma W, Wu H, Higaki Y, et al. Halloysite nanotubes:Green nanomaterial for functional organic-inorganic nanohybrids[J]. The Chemical Record, 2018, 18:1-15. doi: 10.1002/tcr.201880101

    CrossRef Google Scholar

    [10] Du P, Yuan P, Thill A, et al. Insights into the formation mechanism of imogolite from a full-range observation of its sol-gel growth[J]. Applied Clay Science, 2017, 150:115-124. doi: 10.1016/j.clay.2017.09.021

    CrossRef Google Scholar

    [11] Shchukin DG, Sukhorukov GB, Price RR, et al. Halloysite nanotubes as biomimetic nanoreactors[J]. Small, 2005, 1(5):510-513. doi: 10.1002/smll.200400120

    CrossRef Google Scholar

    [12] Yuan P, Southon PD, Liu ZW, et al. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release[J]. Nanotechnology, 2012, 23(37):375705. doi: 10.1088/0957-4484/23/37/375705

    CrossRef Google Scholar

    [13] Tan DY, Yuan P, Annabi-Bergaya F, et al. Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen[J]. Microporous and Mesoporous Materials, 2013, 179:89-98. doi: 10.1016/j.micromeso.2013.05.007

    CrossRef Google Scholar

    [14] Luo P, Zhao YF, Zhang B, et al. Study on the adsorption of neutral red from aqueous solution onto halloysite nanotubes[J]. Water Research, 2010, 44(5):1489-1497. doi: 10.1016/j.watres.2009.10.042

    CrossRef Google Scholar

    [15] Lvov YM, DeVilliers MM, Fakhrullin RF. The application of halloysite tubule nanoclay in drug delivery[J]. Expert Opinion on Drug Delivery, 2016, 13(7):977-986. doi: 10.1517/17425247.2016.1169271

    CrossRef Google Scholar

    [16] 刘明贤.具有新型界面结构的聚合物-埃洛石纳米复合材料[D].广州: 华南理工大学, 2010.http://cdmd.cnki.com.cn/Article/CDMD-10561-2010229227.htm

    Google Scholar

    [17] Vergaro V, Abdullayev E, Lvov YM, et al. Cytocompatibility and uptake of halloysite clay nanotubes[J]. Biomacromolecules, 2010, 11(3):820-826. doi: 10.1021/bm9014446

    CrossRef Google Scholar

    [18] Lai XY, Agarwal M, Lvov YM, et al. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture[J]. Journal of Applied Toxicology, 2013, 33(11):1316-1329.

    Google Scholar

    [19] Ahmed FR, Shoaib MH, Azhar M, et al. In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes[J]. Colloids and Surfaces B-Biointerfaces, 2015, 135:50-55. doi: 10.1016/j.colsurfb.2015.07.021

    CrossRef Google Scholar

    [20] Kamalieva RF, Ishmukhametov IR, Batasheva SN, et al. Uptake of halloysite clay nanotubes by human cells:Colourimetric viability tests and microscopy study[J]. Nano-Structures & Nano-Objects, 2018, 15:54-60.

    Google Scholar

    [21] Cavallaro G, Lazzara G, Konnova S, et al. Composite films of natural clay nanotubes with cellulose and chitosan[J]. Green Materials, 2014, 2(4):232-242. doi: 10.1680/gmat.14.00014

    CrossRef Google Scholar

    [22] Fakhrullina GI, Akhatova FS, Lvov YM, et al. Toxicity of halloysite clay nanotubes in vivo:A Caenorhabditis elegans study[J]. Environmental Science-Nano, 2015, 2(1):54-59. doi: 10.1039/C4EN00135D

    CrossRef Google Scholar

    [23] Kryuchkova M, Danilushkina A, Lvov Y, et al. Evaluation of toxicity of nanoclays and graphene oxide in vivo:A Paramecium caudatum study[J]. Environmental Science-Nano, 2016, 3(2):442-452. doi: 10.1039/C5EN00201J

    CrossRef Google Scholar

    [24] Bellani L, Giorgetti L, Riela S, et al. Ecotoxicity of halloysite nanotube-supported palladium nanoparticles in Raphanus sativus L[J]. Environmental Toxicology and Chemistry, 2016, 35(10):2503-2510. doi: 10.1002/etc.3412

    CrossRef Google Scholar

    [25] Wang X, Gong J, Gui Z, et al. Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration[J]. Environmental Toxicology, 2018, 33:623-630. doi: 10.1002/tox.22543

    CrossRef Google Scholar

    [26] 王雪, 徐小龙, 龚家春, 等.埃洛石纳米管的口服毒性研究(英文)[J].中国科学技术大学学报, 2017, 47(12):988-995. doi: 10.3969/j.issn.0253-2778.2017.12.003

    CrossRef Google Scholar

    [27] Wang X, Gong J, Rong R, et al. Halloysite nanotubes-induced Al accumulation and fibrotic response in lung of mice after 30-day repeated oral administration[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11):2925-2933. doi: 10.1021/acs.jafc.7b04615

    CrossRef Google Scholar

    [28] Leporatti S. Halloysite clay nanotubes as nano-bazookas for drug delivery[J]. Polymer International, 2017, 66(8):1111-1118. doi: 10.1002/pi.5347

    CrossRef Google Scholar

    [29] Hanif M, Jabbar F, Sharif S, et al. Halloysite nanotubes as a new drug-delivery system:A review[J]. Clay Minerals, 2016, 51(3):469-477. doi: 10.1180/claymin.2016.051.3.03

    CrossRef Google Scholar

    [30] Price RR, Gaber BP, Lvov Y. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral[J]. Journal of Microencapsulation, 2001, 18(6):713-722. doi: 10.1080/02652040010019532

    CrossRef Google Scholar

    [31] Veerabadran NG, Price RR, Lvov YM. Clay nanotubes for encapsulation and sustained release of drugs[J]. Nano, 2007, 2(2):115-120. doi: 10.1142/S1793292007000441

    CrossRef Google Scholar

    [32] Ward CJ, Song S, Davis EW. Controlled release of tetracycline-HCl from halloysite-polymer composite films[J]. Journal of nanoscience and nanotechnology, 2010, 10(10):6641-6649. doi: 10.1166/jnn.2010.2647

    CrossRef Google Scholar

    [33] Carazo E, Borregosánchez A, Garcíavillén F, et al. Assessment of halloysite nanotubes as vehicles of isoniazid[J]. Colloids & Surfaces B Biointerfaces, 2017, 160:337-344.

    Google Scholar

    [34] Tan DY, Yuan P, Annabi-Bergaya F, et al. Loading and in vitro release of ibuprofen in tubular halloysite[J]. Applied Clay Science, 2014, 96:50-55. doi: 10.1016/j.clay.2014.01.018

    CrossRef Google Scholar

    [35] Rawtani D, Pandey G, Tharmavaram M, et al. Development of a novel 'nanocarrier' system based on halloysite nanotubes to overcome the complexation of ciprofloxacin with iron:An in vitro approach[J]. Applied Clay Science, 2017, 150:293-302. doi: 10.1016/j.clay.2017.10.002

    CrossRef Google Scholar

    [36] Liu F, Bai L, Zhang H, et al. Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(37):31626.

    Google Scholar

    [37] Liu J, Zhang Y, Zeng Q, et al. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes[J]. Science Advances, 2019, 5(9):eaaw6499. doi: 10.1126/sciadv.aaw6499

    CrossRef Google Scholar

    [38] Ana CS, Caroline F, Francisco V, et al. Halloysite clay nanotubes for life sciences applications:From drug encapsulation to bioscaffold[J]. Advances in Colloid and Interface Science, 2018, 257:58-70. doi: 10.1016/j.cis.2018.05.007

    CrossRef Google Scholar

    [39] Nitya G, Nair GT, Mony U, et al. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering[J]. Journal of Materials Science-Materials in Medicine, 2012, 23(7):1749-1761. doi: 10.1007/s10856-012-4647-x

    CrossRef Google Scholar

    [40] Liu MX, Wu CC, Jiao YP, et al. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering[J]. Journal of Materials Chemistry B, 2013, 1(15):2078-2089. doi: 10.1039/c3tb20084a

    CrossRef Google Scholar

    [41] Liu MX, Dai LB, Shi HZ, et al. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering[J]. Materials Science & Engineering C-Materials for Biological Applications, 2015, 49:700-712.

    Google Scholar

    [42] Wei WB, Abdullayev E, Hollister A, et al. Clay nanotube/poly(methyl methacrylate) bone cement composites with sustained antibiotic release[J]. Macromolecular Materials and Engineering, 2012, 297(7):645-653. doi: 10.1002/mame.201100309

    CrossRef Google Scholar

    [43] Alavi M, Totonchi A, Okhovat MA, et al. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing[J]. Blood Coagulation & Fibrinolysis, 2014, 25(8):856-859.

    Google Scholar

    [44] Hughes AD, King MR. Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells[J]. Langmuir, 2010, 26(14):12155-12164. doi: 10.1021/la101179y

    CrossRef Google Scholar

    [45] Hughes AD, Mattison J, Powderly JD, et al. Rapid isolation of viable circulating tumor cells from patient blood samples[J]. Jove-Journal of Visualized Experiments, 2012, (64):4248.

    Google Scholar

    [46] He R, Liu MX, Shen Y, et al. Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells[J]. Journal of Materials Chemistry B, 2017, 5(9):1712-1723. doi: 10.1039/C6TB02538B

    CrossRef Google Scholar

    [47] Liu M, Huo Z, Liu T, et al. Self-assembling halloysite nanotubes into concentric ring patterns in a sphere-on-flat geometry[J]. Langmuir, 2017, 33:3088-3098. doi: 10.1021/acs.langmuir.6b04460

    CrossRef Google Scholar

    [48] Stavitskaya AV, Novikov AA, Kotelev MS, et al. Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes[J]. Nanomaterials, 2018, 8:806391.

    Google Scholar

    [49] Abdullayev E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation:Release control with end stoppers[J]. Journal of Materials Chemistry, 2010, 20(32):6681-6687. doi: 10.1039/c0jm00810a

    CrossRef Google Scholar

    [50] 杜阳, 刘颖, 冯年平.埃洛石:缓释药物的新型载体[J].药学进展, 2012, 36(7):315-320. doi: 10.3969/j.issn.1001-5094.2012.07.004

    CrossRef Google Scholar

    [51] Donaldson L. Halloysite clay nanotubes hold promise[J]. Materials Today, 2016, 19(1):5-6.

    Google Scholar

    [52] Du ML, Guo BC, Jia DM. Newly emerging applications of halloysite nanotubes:A review[J]. Polymer International, 2010, 59(5):574-582.

    Google Scholar

    [53] 张俊珩.埃洛石纳米管的表面改性及其对环氧树脂复合材料结构与性能的影响[D]广州: 华南理工大学, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10561-1012452857.htm

    Google Scholar

    [54] 伍巍, 吴鹏君, 何丁, 等.埃洛石纳米管在高分子纳米复合材料中的应用进展[J].化工进展, 2011, 30(12):2647-2651, 2657.

    Google Scholar

    [55] Lu D, Chen HB, Wu JS, et al. Direct measurements of the young's modulus of a single halloysite nanotube using a transmission electron microscope with a bending stage[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(9):7789-7793. doi: 10.1166/jnn.2011.4720

    CrossRef Google Scholar

    [56] Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release[J]. Journal of Materials Chemistry B, 2013, 1(23):2894-2903. doi: 10.1039/c3tb20059k

    CrossRef Google Scholar

    [57] Lvov Y, Abdullayev E. Functional polymer-clay nanotube composites with sustained release of chemical agents[J]. Progress in Polymer Science, 2013, 38(10-11):1690-1719. doi: 10.1016/j.progpolymsci.2013.05.009

    CrossRef Google Scholar

    [58] Lvov Y, Wang W, Zhang L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds[J]. Advanced Materials, 2015, 28(6):1227-1250.

    Google Scholar

    [59] Ismail H, Pasbakhsh P, Fauzi MNA, et al. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites[J]. Polymer Testing, 2008, 27(7):841-850. doi: 10.1016/j.polymertesting.2008.06.007

    CrossRef Google Scholar

    [60] Du ML, Guo BC, Lei YD, et al. Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites:Interfacial interaction and performance[J]. Polymer, 2008, 49(22):4871-4876. doi: 10.1016/j.polymer.2008.08.042

    CrossRef Google Scholar

    [61] 何毅, 丁亿鑫, 章杰, 等.TiO_2负载埃洛石纳米管杂化材料的制备及其在环氧复合涂层中的应用[J].涂料工业, 2015, 45(5):1-6. doi: 10.3969/j.issn.0253-4312.2015.05.001

    CrossRef Google Scholar

    [62] Ning N-Y, Yin Q-J, Luo F, et al. Crystallization behavior and mechanical properties of polypropylene/halloysite composites[J]. Polymer, 2007, 48(25):7374-7384. doi: 10.1016/j.polymer.2007.10.005

    CrossRef Google Scholar

    [63] Deng SQ, Zhang JN, Ye L, et al. Toughening epoxies with halloysite nanotubes[J]. Polymer, 2008, 49(23):5119-5127. doi: 10.1016/j.polymer.2008.09.027

    CrossRef Google Scholar

    [64] Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole[J]. ACS Applied Materials & Interfaces, 2009, 1(7):1437-1443.

    Google Scholar

    [65] Liu MX, Zhang Y, Zhou CR. Nanocomposites of halloysite and polylactide[J]. Applied Clay Science, 2013, 75-76:52-59. doi: 10.1016/j.clay.2013.02.019

    CrossRef Google Scholar

    [66] Smith RJ, Holder KM, Ruiz S, et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flammability[J]. Advanced Functional Materials, 2017, 28(27):1703289.

    Google Scholar

    [67] Liu YC, Tu WW, Chen MY, et al. A mussel-induced method to fabricate reduced graphene oxide/halloysite nanotubes membranes for multifunctional applications in water purification and oil/water separation[J]. Chemical Engineering Journal, 2018, 336:263-277. doi: 10.1016/j.cej.2017.12.043

    CrossRef Google Scholar

    [68] Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes[J]. Current Opinion in Colloid & Interface Science, 2018, 35:42-50.

    Google Scholar

    [69] Wu F, Zheng JQ, Li ZX, et al. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation[J]. Chemical Engineering Journal, 2019, 359:672-683. doi: 10.1016/j.cej.2018.11.145

    CrossRef Google Scholar

    [70] Qin LJ, Zhao YF, Liu JD, et al. Oriented clay nanotube membrane assembled on microporous polymeric substrates[J]. ACS Applied Materials & Interfaces, 2016, 8(50):34914-34923.

    Google Scholar

    [71] Massaro M, Colletti CG, Lazzara G, et al. Halloysite nanotubes as support for metal-based catalysts[J]. Journal of Materials Chemistry A, 2017, 5(26):13276-13293. doi: 10.1039/C7TA02996A

    CrossRef Google Scholar

    [72] Philip A, Lihavainen J, Keinänen M, et al. Gold nanoparticle-decorated halloysite nanotubes-Selective catalysts for benzyl alcohol oxidation[J]. Applied Clay Science, 2017, 143:80-88. doi: 10.1016/j.clay.2017.03.015

    CrossRef Google Scholar

    [73] Sanchez-Ballester NM, Ramesh GV, Tanabe T, et al. Activated interiors of clay nanotubes for agglomeration-tolerant automotive exhaust remediation[J]. Journal of Materials Chemistry A, 2015, 3(12):6614-6619. doi: 10.1039/C4TA06966H

    CrossRef Google Scholar

    [74] Pandey G, Munguambe DM, Tharmavaram M, et al. Halloysite nanotubes-An efficient 'nano-support' for the immobilization of α-amylase[J]. Applied Clay Science, 2017, 136:184-191. doi: 10.1016/j.clay.2016.11.034

    CrossRef Google Scholar

    [75] Shu Z, Zhang Y, Yang Q, et al. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity[J]. Nanoscale Research Letters, 2017, 12(1):135. doi: 10.1186/s11671-017-1859-5

    CrossRef Google Scholar

    [76] Shu Z, Zhang Y, Ouyang J, et al. Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite[J]. Applied Surface Science, 2017, 420:833-838. doi: 10.1016/j.apsusc.2017.05.219

    CrossRef Google Scholar

    [77] Zahidah KA, Kakooei S, Ismail MC, et al. Halloysite nanotubes as nanocontainer for smart coating application:A review[J]. Progress in Organic Coatings, 2017, 111:175-185. doi: 10.1016/j.porgcoat.2017.05.018

    CrossRef Google Scholar

    [78] 王绮, 李澄, 郑顺丽, 等.缓蚀剂在埃洛石上的担载与释放规律研究[J].材料导报, 2016, 30(8):61-64.

    Google Scholar

    [79] Shchukin DG, Lamaka SV, Yasakau KA, et al. Active anticorrosion coatings with halloysite nanocontainers[J]. The Journal of Physical Chemistry C, 2008, 112(4):958-964. doi: 10.1021/jp076188r

    CrossRef Google Scholar

    [80] Liu GY, Kang FY, Li BH, et al. Characterization of the porous carbon prepared by using halloysite as template and its application to EDLC[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5-6):1186-1189. doi: 10.1016/j.jpcs.2006.01.044

    CrossRef Google Scholar

    [81] Li CP, Liu JG, Qu XZ, et al. Polymer-modified halloysite composite nanotubes[J]. Journal of Applied Polymer Science, 2008, 110(6):3638-3646. doi: 10.1002/app.28879

    CrossRef Google Scholar

    [82] Zhang L, Liu P. Facile fabrication of uniform polyaniline nanotubes with tubular aluminosilicates as templates[J]. Nanoscale Research Letters, 2008, 3(8):299-302. doi: 10.1007/s11671-008-9155-z

    CrossRef Google Scholar

    [83] Wang AP, Kang FY, Huang ZH, et al. Synthesis of mesoporous carbon nanosheets using tubular halloysite and furfuryl alcohol by a template-like method[J]. Microporous and Mesoporous Materials, 2008, 108(1-3):318-324. doi: 10.1016/j.micromeso.2007.04.021

    CrossRef Google Scholar

    [84] 周述慧, 传秀云.埃洛石为模板合成中孔炭[J].无机材料学报, 2014, 29(6):584-588.

    Google Scholar

    [85] 程志林, 曹宝冲, 刘赞.埃洛石纳米管模板法一步法制备一维碳纳米管/碳纳米棒混合纳米碳材料[J].无机化学学报, 2018, 34(10):1808-1816. doi: 10.11862/CJIC.2018.228

    CrossRef Google Scholar

    [86] Glotov A, Levshakov N, Stavitskaya A, et al. Templated self-assembly of ordered mesoporous silica on clay nanotubes[J]. Chemical Communications, 2019, 55(38):5507-5510. doi: 10.1039/C9CC01935A

    CrossRef Google Scholar

    [87] Rostamzadeh T, Khan MSI, Riche K, et al. Rapid and controlled in situ growth of noble netal nanostructures within halloysite clay nanotubes[J]. Langmuir, 2017, 33(45):13051-13059. doi: 10.1021/acs.langmuir.7b02402

    CrossRef Google Scholar

    [88] Vinokurov V, Glotov A, Chudakov Y, et al. Core/shell ruthenium-halloysite nanocatalysts for hydrogenation of phenol[J]. Industrial & Engineering Chemistry Research, 2017, 56(47):14043-14052.

    Google Scholar

    [89] Vinokurov VA, Stavitskaya AV, Ivanov EV, et al. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12):11316-11323.

    Google Scholar

    [90] 孙攀, 刘国明, 吕冬, 等.埃洛石纳米管增强聚合物复合材料研究进展[J].中国科学:技术科学, 2015, 45(6):602-616.

    Google Scholar

    [91] Yuan P, Thill A, Bergaya F. Nanosized Tubular Clay Minerals[M]. Amsterdam:Elsevier, 2016.

    Google Scholar

    [92] 秦嘉旭, 赵斌伟, 林雅逢, 等.埃洛石纳米管的改性及应用研究[J].河南化工, 2011, 28(11):27-30. doi: 10.3969/j.issn.1003-3467.2011.11.007

    CrossRef Google Scholar

    [93] Zhang HL, Cheng C, Song HZ, et al. A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(Ⅳ)[J]. Chemical Communications, 2019, 55(8):1040-1043. doi: 10.1039/C8CC08667B

    CrossRef Google Scholar

    [94] Zhao M, Liu P. Adsorption behavior of methylene blue on halloysite nanotubes[J]. Microporous and Mesoporous Materials, 2008, 112(1):419-424.

    Google Scholar

    [95] Krawczyk-Coda M. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2017, 129:21-27. doi: 10.1016/j.sab.2017.01.003

    CrossRef Google Scholar

    [96] 陈廷方, 易发成, 冯启明, 等.北川埃洛石黏土对Sr、Co、Cs的吸附性能研究[J].中国矿业, 2011, 20(3):74-77. doi: 10.3969/j.issn.1004-4051.2011.03.021

    CrossRef Google Scholar

    [97] Maziarz P, Matusik J. The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(Ⅱ), Cd(Ⅱ), Zn(Ⅱ) and As(Ⅴ) uptake[J]. Clay Minerals, 2016, 51(3):385-394. doi: 10.1180/claymin.2016.051.3.06

    CrossRef Google Scholar

    [98] Kilislioglu A, Bilgin B. Adsorption of uranium on halloysite[J]. Radiochimica Acta, 2002, 90(3):155-160.

    Google Scholar

    [99] Zheng YA, Wang AQ. Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite[J]. Journal of Macromolecular Science Part A-Pure and Applied Chemistry, 2010, 47(1):33-38.

    Google Scholar

    [100] Deng LL, Yuan P, Liu D, et al. Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors[J]. Applied Clay Science, 2017, 143:184-191. doi: 10.1016/j.clay.2017.03.035

    CrossRef Google Scholar

    [101] Zhou TZ, Li CP, Jin HL, et al. Effective adsorption/reduction of Cr(Ⅵ) oxyanion by halloysite@polyaniline hybrid nanotubes[J]. ACS Applied Materials & Interfaces, 2017, 9(7):6030-6043.

    Google Scholar

    [102] Abdullayev E, Joshi A, Wei WB, et al. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide[J]. ACS Nano, 2012, 6(8):7216-7226. doi: 10.1021/nn302328x

    CrossRef Google Scholar

    [103] Shu Z, Chen Y, Zhou J, et al. Preparation of halloysite-derived mesoporous silica nanotube with enlarged specific surface area for enhanced dye adsorption[J]. Applied Clay Science, 2016, 132:114-121.

    Google Scholar

    [104] Deng L, Yuan P, Liu D, et al. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite[J]. Applied Clay Science, 2019, 181:105240. doi: 10.1016/j.clay.2019.105240

    CrossRef Google Scholar

    [105] Almasri DA, Saleh NB, Atieh MA, et al. Adsorption of phosphate on iron oxide doped halloysite nanotubes[J]. Scientific Reports, 2019, 9:3232. doi: 10.1038/s41598-019-39035-2

    CrossRef Google Scholar

    [106] Yu L, Wang H, Zhang Y, et al. Recent advances in halloysite nanotube derived composites for water treatment[J]. Environmental Science-Nano, 2016, 3(1):28-44. doi: 10.1039/C5EN00149H

    CrossRef Google Scholar

    [107] Zatta L, Gardolinski JEFD, Wypych F. Raw halloysite as reusable heterogeneous catalyst for esterification of lauric acid[J]. Applied Clay Science, 2011, 51(1-2):165-169. doi: 10.1016/j.clay.2010.10.020

    CrossRef Google Scholar

    [108] Tae JW, Jang BS, Kim JR, et al. Catalytic degradation of polystyrene using acid-treated halloysite clays[J]. Solid State Ionics, 2004, 172(1-4):129-133. doi: 10.1016/j.ssi.2004.05.013

    CrossRef Google Scholar

    [109] Wang R, Jiang G, Ding Y, et al. Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes[J]. ACS Appl Mater Interfaces, 2011, 3(10):4154-4158. doi: 10.1021/am201020q

    CrossRef Google Scholar

    [110] Machado GS, Castro KADF, Wypych F, et al. Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions[J]. Journal of Molecular Catalysis A-Chemical, 2008, 283(1-2):99-107. doi: 10.1016/j.molcata.2007.12.009

    CrossRef Google Scholar

    [111] Wang L, Chen JL, Ge L, et al. Halloysite-nanotube-supported Ru nanoparticles for ammonia catalytic decomposition to produce COx-free hydrogen[J]. Energy & Fuels, 2011, 25(8):3408-3416.

    Google Scholar

    [112] von Klitzing R, Stehl D, Pogrzeba T, et al. Halloysites stabilized emulsions for hydroformylation of long chain olefins[J]. Advanced Materials Interfaces, 2017, 4:1600435. doi: 10.1002/admi.201600435

    CrossRef Google Scholar

    [113] Owoseni O, Zhang YH, Su Y, et al. Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization[J]. Langmuir, 2015, 31(51):13700-13707. doi: 10.1021/acs.langmuir.5b03878

    CrossRef Google Scholar

    [114] Yu T, Swientoniewski LT, Omarova M, et al. Investigation of amphiphilic polypeptoid-functionalized halloysite nanotubes as emulsion stabilizer for oil spill remediation[J]. ACS Applied Materials & Interfaces, 2019, 11(31):27944-27953.

    Google Scholar

    [115] Zhou L, He Y, Shi H, et al. One-pot route to synthesize HNTs@PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water[J]. Journal of Hazardous Materials, 2019, 380:120865. doi: 10.1016/j.jhazmat.2019.120865

    CrossRef Google Scholar

    [116] Wei YF, Yuan P, Liu D, et al. Activation of natural halloysite nanotubes by introducing lanthanum oxycarbonate nanoparticles via co-calcination for outstanding phosphate removal[J]. Chemical Communications, 2019, 55(14):2110-2113. doi: 10.1039/C8CC10314C

    CrossRef Google Scholar

    [117] Wilson I. Kaolin and halloysite deposits of China[J]. Clay Minerals, 2004, 39(1):1-15. doi: 10.1180/0009855043910116

    CrossRef Google Scholar

    [118] Wilson MJ. Clay mineralogical and related characteristics of geophagic materials[J]. Journal of Chemical Ecology, 2003, 29(7):1525-1547. doi: 10.1023/A:1024262411676

    CrossRef Google Scholar

    [119] Joussein E, Petit S, Churchman J, et al. Halloysite clay minerals - A review[J]. Clay Minerals, 2005, 40(4):383-426. doi: 10.1180/0009855054040180

    CrossRef Google Scholar

    [120] Raghdi A, Heraiz M, Sahnoune F, et al. Mullite-zirconia composites prepared from halloysite reaction sintered with boehmite and zirconia[J]. Applied Clay Science, 2017, 146:70-80. doi: 10.1016/j.clay.2017.05.037

    CrossRef Google Scholar

    [121] 赵亚婔.埃洛石纳米管及其改性产品在废水处理中的应用研究[D]郑州: 郑州大学, 2010.http://cdmd.cnki.com.cn/Article/CDMD-10459-1011017727.htm

    Google Scholar

    [122] Ramadass K, Sathish CI, Johns A, et al. Characterization and hydrogen storage performance of halloysite nanotubes[J]. Journal of nanoscience and nanotechnology, 2019, 19(12):7892-7898. doi: 10.1166/jnn.2019.16751

    CrossRef Google Scholar

    [123] Liang W, Wu Y, Sun H, et al. Halloysite clay nanotubes based phase change material composites with excellent thermal stability for energy saving and storage[J]. RSC Advances, 2016, 6(24):19669-19675. doi: 10.1039/C5RA27964J

    CrossRef Google Scholar

    [124] Du P, Liu D, Yuan P, et al. Controlling the macroscopic liquid-like behaviour of halloysite-based solvent-free nanofluids via a facile core pretreatment[J]. Applied Clay Science, 2018, 156:126-133. doi: 10.1016/j.clay.2018.01.037

    CrossRef Google Scholar

    [125] Xu P, Zhou Y, Cheng H. Large-scale orientated self-assembled halloysite nanotubes membrane with nanofluidic ion transport properties[J]. Applied Clay Science, 2019, 180:105184. doi: 10.1016/j.clay.2019.105184

    CrossRef Google Scholar

    [126] Gao R, Meng Q, Li J, et al. Modified halloysite nanotubes reduce the toxic effects of zearalenone in gestating sows on growth and muscle development of their offsprings[J]. Journal of Animal Science and Biotechnology, 2016, 7:14. doi: 10.1186/s40104-016-0071-2

    CrossRef Google Scholar

    [127] Yin ST, Meng QW, Zhang BR, et al. Alleviation of zearalenone toxicity by modified halloysite nanotubes in the immune response of swine[J]. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment, 2015, 32(1):87-99.

    Google Scholar

    [128] Tas C, Hendessi S, Baysal M, et al. Halloysite nanotubes/polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties[J]. Food and Bioprocess Technology, 2017, 10(4):789-798. doi: 10.1007/s11947-017-1860-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(2494) PDF downloads(948) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint