Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 6
Article Contents

MENG Yuhang, SHANG Xi, ZHANG Qian, YANG Huaming. Functional Modification of Kaolin and Its Strategic Application[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 69-76. doi: 10.13779/j.cnki.issn1001-0076.2019.06.011
Citation: MENG Yuhang, SHANG Xi, ZHANG Qian, YANG Huaming. Functional Modification of Kaolin and Its Strategic Application[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 69-76. doi: 10.13779/j.cnki.issn1001-0076.2019.06.011

Functional Modification of Kaolin and Its Strategic Application

More Information
  • Kaolin is a natural clay mineral with a typical 1:1 layered silicate crystal structure. This paper firstly introduces the background, composition and physicochemical characteristics of kaolinite resources, and emphatically introduces the research status of kaolinite in three strategic emerging industries of energy conservation and environmental protection, biomedicine and new materials. The natural layered structure, abundant surface hydroxyl groups, large specific surface area and good biocompatibility provide a variety of options for the functional application of kaolin. With the development of science and technology and the progress of national society, the research on kaolinite will be more in-depth.Kaolin will be a strategic non-metallic mineral in the future and will have better application prospects in more fields.

  • 加载中
  • [1] 李微微, 严春杰, 雷新荣.高岭土产业市场调查[J].化工矿物与加工, 2006(2):4-6, 19. doi: 10.3969/j.issn.1008-7524.2006.02.002

    CrossRef Google Scholar

    [2] 汪先三.我国高岭土开发利用现状及应用前景[J].中国非金属矿工业导刊, 2016(2):8-9, 19. doi: 10.3969/j.issn.1007-9386.2016.02.003

    CrossRef Google Scholar

    [3] 吴铁轮.我国高岭土行业现状及发展前景[J].中国非金属矿工业导刊, 2001(4):3-5. doi: 10.3969/j.issn.1007-9386.2001.04.001

    CrossRef Google Scholar

    [4] 陈专, 蔡广超, 马驰, 等.高岭土的性质及应用[J].大众科技, 2013, 15(7):90-93. doi: 10.3969/j.issn.1008-1151.2013.07.032

    CrossRef Google Scholar

    [5] 苗立锋, 包镇红, 宋福生, 等.几种高岭土的组成与可塑性研究[J].硅酸盐通报, 2014, 33(2):333-336.

    Google Scholar

    [6] 王雪静, 张甲敏, 李晓波, 等.高岭土和煅烧高岭土的微观结构研究[J].中国非金属矿工业导刊, 2007(5):18-20. doi: 10.3969/j.issn.1007-9386.2007.05.006

    CrossRef Google Scholar

    [7] 任伟.浅谈高岭土的成因类型及开发应用[J].西部探矿工程, 2015, 27(5):105-107. doi: 10.3969/j.issn.1004-5716.2015.05.036

    CrossRef Google Scholar

    [8] 吴铁轮.我国高岭土行业现状剖析与展望[J].非金属矿, 2002, 25(2):8-10. doi: 10.3969/j.issn.1000-8098.2002.02.002

    CrossRef Google Scholar

    [9] 申继学, 马鸿文.高岭土资源及高岭石合成技术研究进展[J].硅酸盐通报, 2016, 35(4):1150-1158.

    Google Scholar

    [10] 崔吉让, 方启学, 黄国智.一水硬铝石与高岭石的晶体结构和表面性质[J].有色金属工程, 1999, 51(4):25-30.

    Google Scholar

    [11] 赵杏媛, 张有瑜.黏土矿物与黏土矿物分析[M].山东:海洋出版社, 1990:22-23.

    Google Scholar

    [12] 宋晓岚, 黄学辉.无机材料科学基础[M].北京:化学工业出版社, 2005:57-65.

    Google Scholar

    [13] Tombacz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J].Applied Clay Science, 2006, 34(1-4):105-124. doi: 10.1016/j.clay.2006.05.009

    CrossRef Google Scholar

    [14] Hu P, Yang H. Insight into the physicochemical aspects of kaolins with different morphologies[J].Applied Clay Science, 2013, 74:58-65. doi: 10.1016/j.clay.2012.10.003

    CrossRef Google Scholar

    [15] 杨二帅, 蔡晓君, 周梅, 等.重金属废水的处理技术研究[J].当代化工, 2018, 47(1):167-170. doi: 10.3969/j.issn.1671-0460.2018.01.043

    CrossRef Google Scholar

    [16] 张丼娜, 裴强, 安亚明, 等.重金属污水处理的研究与发展[J].农业工程, 2012, 2(11):30-32.

    Google Scholar

    [17] 田建民.生物吸附法在含重金属废水处理中的应用[J].太原理工大学学报, 2000, 31(1):74-78. doi: 10.3969/j.issn.1007-9432.2000.01.022

    CrossRef Google Scholar

    [18] 卓艳婷, 郑志华.重金属污水处理新趋势-生物吸附[J].上海船舶运输科学研究所学报, 2012, 35(1):67-71. doi: 10.3969/j.issn.1674-5949.2012.01.017

    CrossRef Google Scholar

    [19] 夏天华, 严金土, 姬玉鹏.离子交换法处理重金属废水的研究[C].环渤海表面精饰发展论坛, 2014, 2(1): 6-9.

    Google Scholar

    [20] 唐楚寒, 李森, 尚凯, 等.高岭土负载改性壳聚糖重金属吸附剂性能研究[J].当代化工, 2019, 48(8):1664-1667. doi: 10.3969/j.issn.1671-0460.2019.08.007

    CrossRef Google Scholar

    [21] 张继义, 郭晶晶, 郭勇, 等.改性高分子多糖去除重金属离子研究进展[J].兰州交通大学学报, 2014, 33(4):172-178. doi: 10.3969/j.issn.1001-4373.2014.04.035

    CrossRef Google Scholar

    [22] Wang H, Dong Y N, Zhu M, et al. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments[J].Water Research, 2015, 80:130-138. doi: 10.1016/j.watres.2015.05.023

    CrossRef Google Scholar

    [23] 许令国, 万梦, 李诗瑶, 等.改性高岭土处理含铬废水的研究[J].山东化工, 2019, 48(15):230-232. doi: 10.3969/j.issn.1008-021X.2019.15.106

    CrossRef Google Scholar

    [24] 张雨童, 李义连.富里酸-高岭土复合体对溶液中铀的吸附效果探究[J].安全与环境工程, 2019, 26(5):102-107.

    Google Scholar

    [25] Ganguly Mainak, Tao Yuanyuan, Lee Bryan, et al. Natural Kaolin:Sustainable technology for instantaneous and energy neutral recycling of anthropogenic mercury emissions.[J]. ChemSusChem, 2019. https://doi.org/10.1002/cssc.201902955. doi: 10.1002/cssc.201902955

    CrossRef Google Scholar

    [26] 樊聪慧, 黄亚继, 夏志鹏, 等.改性高岭土捕集CdCl_(2)、PbCl_(2)蒸气[J/OL].化工进展, 2019: 1-12.

    Google Scholar

    [27] Mohamed Khairy, Haytham A. Ayoub, Farouk A. Rashwan, et al. Chemical modification of commercial kaolin for mitigation of organicpollutants in environment via adsorption and generation of inorganicpesticides[J]. Applied Clay Science, 2018, 153:124-133. doi: 10.1016/j.clay.2017.12.014

    CrossRef Google Scholar

    [28] Huang Q, Liu M, Chen J, et al. Enhanced removal capability of kaolin toward methylene blue by mussel-inspired functionalization[J]. Journal of Materials Science, 2016, 51(17):8116-8130. doi: 10.1007/s10853-016-0082-6

    CrossRef Google Scholar

    [29] Olushola S. A Yanda, Kehinde O. Sodeinde, P. O. Okolo, et al. Adsorptive behavior of kaolin for amido black dyein aqueous solution[J]. Oriental Journal of Chemistry, 2018, 34(3):1233-1239. doi: 10.13005/ojc/340305

    CrossRef Google Scholar

    [30] Zhang Q, Yan Z, Ouyang J, et al. Chemically modified kaolinite nanolayers for the removal of organic pollutants[J]. Applied Clay Science, 2018, 157:283-290. doi: 10.1016/j.clay.2018.03.009

    CrossRef Google Scholar

    [31] Boge Z, Yanping H, Zebin Y, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes:Electrodes optimization, kinetics, influencing factors and mechanism[J].Separation and Purification Technology, 2018, 210:60-68.

    Google Scholar

    [32] L.F.Cabeza, A.Castell, C. Barreneche, et al. Materials used as PCM in termal energy storage in buildings:A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15:1675-1695. doi: 10.1016/j.rser.2010.11.018

    CrossRef Google Scholar

    [33] 仇影, 吴其胜, 黎水平, 等.二元有机/煤系高岭土复合相变储能材料的制备及其热性能[J].材料科学与工程学报, 2013, 31(2):268-272.

    Google Scholar

    [34] Sari Ahmet. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings[J]. Energy and Buildings, 2015, 96:193-200. doi: 10.1016/j.enbuild.2015.03.022

    CrossRef Google Scholar

    [35] Liu S, Yan Z, Fu L, et al. Hierarchical nano-activated silica nanosheets for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 167:140-149. doi: 10.1016/j.solmat.2017.04.009

    CrossRef Google Scholar

    [36] 郝红, 职佳敏, 毛立功.严寒地区太阳能-地源热泵与热网互补供暖运行方式研究[J].可再生能源, 2016, 34(7):976-982.

    Google Scholar

    [37] 姜洪殿, 董康银, 孙仁金, 等.中国新能源消费预测及对策研究[J].可再生能源, 2016, 34(8):1196-1202.

    Google Scholar

    [38] 陈祉如, 姚兴茂, 尹翔鹏.应用于太阳能热发电站的高岭土基相变储热材料的制备[J].可再生能源, 2019, 37(3):37-41.

    Google Scholar

    [39] 中科院大连化物所分子筛组.沸石分子筛[M].北京:科学出版社, 1978.

    Google Scholar

    [40] 张金山, 周珊, 李侠, 等.煤系高岭土制备分子筛的研究进展[J].煤炭加工与综合利用, 2016(1):72-75, 8.

    Google Scholar

    [41] Wang P, Zha F, Yao L, et al. Synthesis of light olefins from CO2 hydrogenation over (CuO-ZnO)-kaolin/SAPO-34 molecular sieves[J]. Applied Clay Science, 2018, 163:249-256. doi: 10.1016/j.clay.2018.06.038

    CrossRef Google Scholar

    [42] Yan Z, Yang H, Ouyang J, et al. In situ loading of highly-dispersed CuO nanoparticles on hydroxyl-group-rich SiO2-AlOOH composite nanosheets for CO catalytic oxidation[J]. Chemical Engineering Journal, 2017, 316(Complete):1035-1046.

    Google Scholar

    [43] Optimization of biodiesel production from transesterification of triolein using zeolite LTA catalysts synthesized from kaolin clay[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79: 14-22.http://www.sciencedirect.com/science/article/pii/S1876107017300949

    Google Scholar

    [44] S N Khalifah, Z N aini, E K Hayati, et al.Synthesis and characterization of mesoporous NaY zeolite from natural Blitar's kaolin[J]. Materials Science and Engineering, 2018, 333(1):012005.

    Google Scholar

    [45] 沈耀生.利用高岭土制备4A分子筛[J/OL].云南化工, 2019, 46(10): 8-11.

    Google Scholar

    [46] 刘明慧, 魏振浩, 周茁, 等.碱处理对高岭土微球上原位合成ZSM-5分子筛的影响[J].无机盐工业, 2016, 48(7):68-72.

    Google Scholar

    [47] 刘丽娜, 王鼎.内蒙煤系高岭土煅烧实验研究[J].科技展望, 2016, 26(20):271, 273. doi: 10.3969/j.issn.1672-8289.2016.20.234

    CrossRef Google Scholar

    [48] 卢文彪, 曾元儿, 矿物药的研究及发展概况[J].广东微量元素科学, 2001(6):17-20. doi: 10.3969/j.issn.1006-446X.2001.06.003

    CrossRef Google Scholar

    [49] 汤庆国, 沈上越.矿物药应用研究中的问题及对策[J].矿产综合利用, 2003, 4:32-36. doi: 10.3969/j.issn.1000-6532.2003.04.008

    CrossRef Google Scholar

    [50] 龙梅.高岭石基复合材料的性能调控及其生物医学应用探索[D].长沙: 中南大学, 2019.

    Google Scholar

    [51] Baker S E, Sawvel A M, Zheng N, et al. Controlling bioprocesses with inorganic surfaces:layered clay hemostatic agents[J]. Chemistry of Materials, 2007, 19(18):4390-4392. doi: 10.1021/cm071457b

    CrossRef Google Scholar

    [52] Liang Yuping, Xu Congcong, Li Guofeng, et al. Graphene-kaolin composite sponge for rapid and riskless hemostasis.[J]. Colloids and surfaces. B, Biointerfaces, 2018, 169:168-175. doi: 10.1016/j.colsurfb.2018.05.016

    CrossRef Google Scholar

    [53] Estela Chavez-Delgado M, Veronica Kishi-Sutto C, Albores de la-Riva X N, et al.Topic usage of kaolin-impregnated gauze as a hemostatic in tonsillectomy[J].Journal of Surgical Research, 2014, 192(2):678-685. doi: 10.1016/j.jss.2014.05.040

    CrossRef Google Scholar

    [54] Bonina F P, Giannossi M L, Medici L, et al. Adsorption of salicylic acid onbentonite and kaolin and release experiments[J]. Applied Clay Science, 2007, 36(1-3):77-85. doi: 10.1016/j.clay.2006.07.008

    CrossRef Google Scholar

    [55] Mallick S, Pattnaik S, Swain K, et al. Formation of physically stable amorphous phase of ibuprofen by solid state milling with kaolin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(2):346-351. doi: 10.1016/j.ejpb.2007.06.003

    CrossRef Google Scholar

    [56] Tan D, Yuan P, Annabi-Bergaya F, et al. High-capacity loading of 5-fluorouracil on the methoxy-modified kaolinite[J]. Applied Clay Science, 2014, 100:60-65. doi: 10.1016/j.clay.2014.02.022

    CrossRef Google Scholar

    [57] Hamilton A R, Hutcheon G A, Roberts M, et al. Formulation and antibacterial profiles of clay-ciprofloxacin composites[J]. Applied Clay Science, 2014, 87:129-135. doi: 10.1016/j.clay.2013.10.020

    CrossRef Google Scholar

    [58] Nik Ahmad Nizam Nik Malek, Nur Isti'anah Ramli. Characterization and antibacterial activity of cetylpyridinium bromide (CPB) immobilized on kaolinite with different CPB loadings[J]. Applied Clay Science, 2015, 109:8-14.

    Google Scholar

    [59] Tang W, Yuan Y, Lin D, et al. Kaolin-reinforced 3D MBG scaffolds with hierarchical architecture and robust mechanical strength for bone tissue engineering[J]. Journal of Materials Chemistry B, 2014, 2(24):3782-3790. doi: 10.1039/C4TB00025K

    CrossRef Google Scholar

    [60] 朱华.高岭土应用的工业进展及现状[J].矿业工程, 2005, 3(6):25-26. doi: 10.3969/j.issn.1671-8550.2005.06.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(2)

Article Metrics

Article views(2798) PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint