Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 6
Article Contents

DU Peixin, YUAN Peng. Studies and Applications of Pyrophyllite in Key Mineral Material Areas Such as Superhard Materials[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 87-92. doi: 10.13779/j.cnki.issn1001-0076.2019.06.013
Citation: DU Peixin, YUAN Peng. Studies and Applications of Pyrophyllite in Key Mineral Material Areas Such as Superhard Materials[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 87-92. doi: 10.13779/j.cnki.issn1001-0076.2019.06.013

Studies and Applications of Pyrophyllite in Key Mineral Material Areas Such as Superhard Materials

More Information
  • Research advances on the application of pyrophyllite in fields of superhard material, refractories, ceramic industry and environmental remediation are reviewed. The research status, challenges and prospects of using pyrophyllite as a sealing and pressure-transmitting medium in the synthesis of superhard materials are mainly discussed. Due to its unique structure and properties, especially the thermal behavior, pyrophyllite plays an irreplaceable role in synthesizing superhard materials, rendering it a strategic resource with superiority in China. Research and development of pyrophyllite-based hybrid sealing and pressure-transmitting medium is a research area that needs to pay more attention and devotion in the future.

  • 加载中
  • [1] Kremleva A, Martorell B, Krüger S, et al. Uranyl adsorption on solvated edge surfaces of pyrophyllite:A DFT model study[J]. Physical Chemistry Chemical Physics, 2012, 14(16):5815-5823.

    Google Scholar

    [2] 陈天虎, 王道轩, 方啸虎, 等.合成金刚石生产中叶蜡石传压密封材料矿物学研究[J].矿物学报, 2001, 21(3):547-550.

    Google Scholar

    [3] Drits VA, Derkowski A, McCarty DK. New insight into the structural transformation of partially dehydroxylated pyrophyllite[J]. American Mineralogist, 2011, 96(1):153-171.

    Google Scholar

    [4] Drits VA, Guggenheim S, Zviagina BB, et al. Structures of the 2 GA6FA 1 layers of pyrophyllite and talc[J]. Clays and Clay Minerals, 2012, 60(6):574-587.

    Google Scholar

    [5] 张莉丽, 林峰, 吕智, 等.我国叶蜡石的开发研究及其应用现状(上)[J].超硬材料工程, 2014, 26(3):35-38.

    Google Scholar

    [6] 楼家毅, 吴琳梅, 童东绅, 等.叶蜡石的改性加工与利用[J].中国非金属矿工业导刊, 2012, (2):63-66.

    Google Scholar

    [7] 张巍.我国叶蜡石的应用进展[J].矿物岩石, 2016, 36(3):15-28.

    Google Scholar

    [8] 张少颖, 张华锋.叶蜡石化蚀变过程中的元素活动性与流体性质:以山西五台地区白云叶蜡石矿为例[J].岩石学报, 2017, 33(6):1872-1892.

    Google Scholar

    [9] 杨炳飞, 刘杰.高压合成工艺中固体密封传压介质研制探讨[J].金刚石与磨料磨具工程, 2012, 32(2):57-62.

    Google Scholar

    [10] 张国防.浙江省龙泉市兰头叶蜡石矿地质特征及应用前景研究[J].科技创新导报, 2009(27):125, 127.

    Google Scholar

    [11] Son Y-S, Kang M-K, Yoon W-J. Pyrophyllite mapping in the Nohwa deposit, Korea, using ASTER remote sensing data[J]. Geosciences Journal, 2014, 18(3):295-305.

    Google Scholar

    [12] Öner F, Taş A. Geochemistry, mineralogy and genesis of pyrophyllite deposits in the Pötürge region (Malatya, Eastern Turkey)[J]. Geochemistry International, 2013, 51(2):140-154.

    Google Scholar

    [13] 林子华.福建省建瓯市井后叶蜡石矿床地质特征及找矿标志[J].化工矿产地质, 2018, 40(2):89-95.

    Google Scholar

    [14] 林子华.福建省建瓯市井后叶蜡石矿床蚀变矿物特征及找矿意义[J].居舍, 2017, (24):143-145.

    Google Scholar

    [15] Izci E. The investigation of dielectric properties of pyrophyllite[J]. Key Engineering Materials, 2004, 264-268:1361-1364.

    Google Scholar

    [16] Kim B-J, Cho KH, Chang B, et al. Sequential microwave roasting and magnetic separation for removal of Fe and Ti impurities in low-grade pyrophyllite ore from Wando mine, South Korea[J]. Minerals Engineering, 2019, 140:105881.

    Google Scholar

    [17] 郑日升, 王大伟, 方啸虎.六面顶超高压下叶蜡石流变量与压缩位移的关系研究[J].有色金属, 2011, 63(2):219-224.

    Google Scholar

    [18] 邓雯丽, 邓福铭, 马向东, 等.叶蜡石高压同步辐射X射线衍射分析[J].矿业科学学报, 2019, 4(3):254-260.

    Google Scholar

    [19] 杨炳飞, 刘杰.高岭石质密封传压介质金刚石合成扩大试验研究[J].人工晶体学报, 2012, 41(6):1581-1586.

    Google Scholar

    [20] 贾攀, 卢灿华, 郝兆印.叶蜡石的性能及密封、保温作用(下)[J].超硬材料工程, 2009, 21(6):28-32.

    Google Scholar

    [21] 贾攀, 卢灿华, 郝兆印.叶蜡石的性能及密封、保温作用[J].超硬材料工程, 2009, 21(5):23-27.

    Google Scholar

    [22] Hicks TL, Secco RA. Dehydration and decomposition of pyrophyllite at high pressures:Electrical conductivity and X-ray diffraction studies to 5GPa[J]. Canadian Journal of Earth Sciences, 1997, 34(6):875-882.

    Google Scholar

    [23] 贾攀, 卢灿华, 郝兆印.金刚石生长相关技术的讨论[J].超硬材料工程, 2011, 23(2):19-23.

    Google Scholar

    [24] 邓雯丽, 邓福铭, 杨雪峰, 等.高温高压合成金刚石用叶蜡石腔体热导率研究[J].矿业科学学报, 2018, 3(3):284-289.

    Google Scholar

    [25] 李瑞, 马红安, 贾晓鹏.叶蜡石塑性本构模型的初探[J].超硬材料工程, 2006(1):14-18.

    Google Scholar

    [26] 李达明, 刘光照, 周军学.水促进的叶蜡石在超高压高温下的相转变及其对技术应用的影响[J].科学通报, 1978(8):481-485, 495.

    Google Scholar

    [27] 张战.卸压放炮与传压介质[J].超硬材料工程, 2012, 24(2):8-13.

    Google Scholar

    [28] 许晨阳, 邓雯丽, 朱江坡, 等.叶蜡石的水含量对传压密封性能的影响[J].山东工业技术, 2018, (2):59-60.

    Google Scholar

    [29] 刘彦玲.天然叶蜡石与复合叶蜡石材料的探讨[J].超硬材料工程, 2011, 23(4):26-28.

    Google Scholar

    [30] 汪洋, 万隆, 刘小磐, 等.叶蜡石性能对合成金刚石的影响[J].超硬材料工程, 2005, (3):21-24.

    Google Scholar

    [31] 张莉丽, 林峰, 吕智, 等.我国叶蜡石的开发研究及其应用现状(下)[J].超硬材料工程, 2014, 26(4):43-46.

    Google Scholar

    [32] 徐国平, 郑日升, 梁红原.叶蜡石的矿物成分对合成金刚石的影响[J].金刚石与磨料磨具工程, 2005(2):64-66.

    Google Scholar

    [33] 王松顺.叶蜡石性质对金刚石合成技术的影响[J].珠宝科技, 2003(3):22-25.

    Google Scholar

    [34] 苏承东, 尹斌华, 郭保华.天然叶蜡石及粉压块力学性能的试验研究[J].河南理工大学学报:自然科学版, 2010, 29(3):375-381.

    Google Scholar

    [35] 汪灵, 张振禹.叶蜡石高温物相及其演化特征[J].科学通报, 1996(13):1201-1204.

    Google Scholar

    [36] 李瑞, 马红安, 尹斌华, 等.基于ANSYS/LS-DYNA的叶蜡石传压性能的有限元分析[J].吉林大学学报:工学版, 2008, 38(2):292-297.

    Google Scholar

    [37] 韦家新, 林峰, 何绪林, 等.影响立方氮化硼单晶合成效果的工艺探讨[J].超硬材料工程, 2006(5):15-17.

    Google Scholar

    [38] 武艳强, 林玉, 李效政, 等.长方体叶蜡石块在人造金刚石合成中的应用[J].超硬材料工程, 2012, 24(4):25-27.

    Google Scholar

    [39] 王前进, 杨晓军, 唐营, 等.叶蜡石在合成金刚石中的流动规律研究及行为探析[J].中国新技术新产品, 2015(12):55.

    Google Scholar

    [40] 郝兆印, 贾攀, 卢灿华, 等.高温高压条件下叶蜡石的相变[J].金刚石与磨料磨具工程, 2003, (3):59-63.

    Google Scholar

    [41] Sainz-Diaz CI, Escamilla-Roa E, Hernández-Laguna A. Pyrophyllite dehydroxylation process by First Principles calculations[J]. American Mineralogist, 2004, 89(7):1092-1100.

    Google Scholar

    [42] Erdemoglu M, Birinci M, Uysal T, et al. Mechanical activation of pyrophyllite ore for aluminum extraction by acidic leaching[J]. Journal of Materials Science, 2018, 53(19):13801-13812.

    Google Scholar

    [43] 潘贤华.叶蜡石瓷的研制[J].中国陶瓷, 1986(4):21-26, 45.

    Google Scholar

    [44] Mukhopadhyay TK, Ghatak S, Maiti HS. Effect of pyrophyllite incorporation in porcelain composition on mechanical properties and microstructure[J]. Ceramics International, 2009, 35(7):2555-2562.

    Google Scholar

    [45] 孙乙庭.叶蜡石制备介电陶瓷及其性能研究[D].长春: 吉林大学, 2009.http://cdmd.cnki.com.cn/Article/CDMD-10183-2009091731.htm

    Google Scholar

    [46] 张培萍, 孙乙庭, 于德利, 等.低温低介电陶瓷的制备及其性能影响因素[J].吉林大学学报(地球科学版), 2010, 40(6):1446-1449.

    Google Scholar

    [47] 李国盛.叶蜡石制卫生陶瓷[J].陶瓷, 1986(6):8-12.

    Google Scholar

    [48] 张巍, 李雪东, 戴文勇.SiO2微粉加入量对焦宝石基喷涂耐火材料抗热震性能的影响[J].机械工程材料, 2011, 35(8):30-32, 36.

    Google Scholar

    [49] 杨林, 廖立兵, 钱忠俊, 等.Sialon-TiNC复相材料在高炉出铁沟耐火材料中的应用研究[J].炼铁, 2011, 30(6):44-46.

    Google Scholar

    [50] Laskowski J. Electrokinetic measurements in aqueous solutions of weak electrolyte type surfactants[J]. Journal of Colloid and Interface Science, 1993, 159(2):349-353.

    Google Scholar

    [51] 石志恒, 陈加加, 李云霞, 等.钠基蒙脱石和叶蜡石吸附水溶液中的铜离子研究[J].广州化工, 2019, 47(4):51-54.

    Google Scholar

    [52] Prasad M, Saxena S. Attenuation of divalent toxic metal ions using natural sericitic pyrophyllite[J]. Journal of Environmental Management, 2008, 88(4):1273-1279.

    Google Scholar

    [53] Erdemoglu M, Erdemoglu S, Sayilkan F, et al. Organo-functional modified pyrophyllite:preparation, characterisation and Pb(Ⅱ) ion adsorption property[J]. Applied Clay Science, 2004, 27(1-2):41-52.

    Google Scholar

    [54] 陈忠村, 赵耀林, 杨琳.铯在叶蜡石孔隙中吸附与扩散的分子动力学研究[J].中国科学:化学, 2019, 49(1):65-70.

    Google Scholar

    [55] 张陶娜, 徐雪雯, 董亮, 等.分子动力学方法模拟不同温度下铀酰在叶蜡石上的吸附和扩散行为[J].物理化学学报, 2017, 33(10):2013-2021.

    Google Scholar

    [56] Goswami A, Purkait MK. Kinetic and equilibrium study for the fluoride adsorption using pyrophyllite[J]. Separation Science and Technology, 2011, 46(11):1797-1807.

    Google Scholar

    [57] Miyah Y, Lahrichi A, Idrissi M, et al. Assessment of adsorption kinetics for removal potential of crystal violet dye from aqueous solutions using Moroccan pyrophyllite[J]. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 23(1):20-28.

    Google Scholar

    [58] Hideo H. Removal of some aromatic hydrocarbons from water by pyrophyllite[J]. Clay Science, 2013, 17(3):49-55.

    Google Scholar

    [59] Gücek A, Şener S, Bilgen S, et al. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions[J]. Journal of Colloid and Interface Science, 2005, 286(1):53-60.

    Google Scholar

    [60] Kang J-K, Lee C-G, Park J-A, et al. Adhesion of bacteria to pyrophyllite clay in aqueous solution[J]. Environmental Technology, 2013, 34(6):703-710.

    Google Scholar

    [61] El Gaidoumi A, Loqman A, Benadallah AC, et al. Co(Ⅱ)-pyrophyllite as catalyst for phenol oxidative degradation:optimization study using response surface methodology[J]. Waste and Biomass Valorization, 2019, 10(4):1043-1051.

    Google Scholar

    [62] El Gaidoumi A, Doña-Rodríguez JM, Pulido Melián E, et al. Catalytic efficiency of cu-supported pyrophyllite in heterogeneous catalytic oxidation of phenol[J]. Arabian Journal for Science and Engineering, 2019, 44(7):6313-6325.

    Google Scholar

    [63] El Gaidoumi A, Doña-Rodríguez JM, Pulido Melián E, et al. Mesoporous pyrophyllite-titania nanocomposites:synthesis and activity in phenol photocatalytic degradation[J]. Research on Chemical Intermediates, 2019, 45(2):333-353.

    Google Scholar

    [64] Jeong Y, Lee S, Hong S, et al. Preparation, characterization and application of low-cost pyrophyllite-alumina composite ceramic membranes for treating low-strength domestic wastewater[J]. Journal of Membrane Science, 2017, 536:108-115.

    Google Scholar

    [65] Panda L, Rath SS, Rao DS, et al. Thorough understanding of the kinetics and mechanism of heavy metal adsorption onto a pyrophyllite mine waste based geopolymer[J]. Journal of Molecular Liquids, 2018, 263:428-441.

    Google Scholar

    [66] Singh S, Jena SK, Das B. Application of pyrophyllite mine waste for the removal of cadmium and lead ions from aqueous solutions[J]. Desalination and Water Treatment, 2016, 57(19):8952-8966.

    Google Scholar

    [67] 陆现彩, 尹琳, 赵连泽, 等.常见层状硅酸盐矿物的表面特征[J].硅酸盐学报, 2003, 31(1):60-65.

    Google Scholar

    [68] Kwon KD, Newton AG. Structure and stability of pyrophyllite edge surfaces:Effect of temperature and water chemical potential[J]. Geochimica et Cosmochimica Acta, 2016, 190:100-114.

    Google Scholar

    [69] Evans B. Talc, pyrophyllite, and related minerals[J]. Hydrous phyllosilicates, 1988:225-294.

    Google Scholar

    [70] Keren R, Grossl PR, Sparks DL. Equilibrium and kinetics of borate adsorption-desorption on pyrophyllite in aqueous suspensions[J]. Soil Science Society of America Journal, 1994, 58(4):1116-1122.

    Google Scholar

    [71] Scheidegger AM, Lamble GM, Sparks DL. Investigation of Ni sorption on pyrophyllite:An XAFS study[J]. Environmental Science & Technology, 1996, 30(2):548-554.

    Google Scholar

    [72] 张巍.叶蜡石在环境污染治理中的应用与进展[J].环境工程技术学报, 2018, 8(1):109-116.

    Google Scholar

    [73] Gaidoumi AE, Benabdallah AC, Bali BE, et al. Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source[J]. Arabian Journal for Science and Engineering, 2018, 43(1):191-197.

    Google Scholar

    [74] Idiawati R, Fuad A, Mufti N, et al. Preparation of molecular sieve from natural pyrophyllite and characterization of its Al/Si ratio, crystal structure, and porosity[J]. Journal of Physics:Conference Series, 2017, 853(1):012037.

    Google Scholar

    [75] Jun K, Lee K, Kim G, et al. A new route for the synthesis of β-sialon:Eu2+ phosphors using pyrophyllite powders[J]. Ceramics International, 2013, 39:S349-S353.

    Google Scholar

    [76] Fuad A, Mufti N, Diantoro M, et al. Synthesis and characterization of highly purified nanosilica from pyrophyllite ores[J]. AIP Conference Proceedings, 2016, 1719(1):030020.

    Google Scholar

    [77] 张巍.叶蜡石性能研究进展[J].金属矿山, 2017(8):1-11.

    Google Scholar

    [78] 陈延芳.青田石、昌化石的岩石学特征与成因分析[D].北京: 中国地质大学(北京), 2013.http://cdmd.cnki.com.cn/Article/CDMD-11415-1013261815.htm

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2060) PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint