Citation: | ZHOU Li-li, DONG Li-nan, ZHU Chun-yao, ZHANG Ji-ming. Determination of 14 Major and Minor Elements in Dust Ash by X-ray Fluorescence Spectrometry with Powder-Pelleting-Lined Boric Acid Preparation[J]. Rock and Mineral Analysis, 2021, 40(4): 612-618. doi: 10.15898/j.cnki.11-2131/td.202002280021 |
The high content of potassium, sodium, zinc, and chlorine in dust ash significantly affects the stable operation of converter. To recycle the dust ash, it is necessary to accurately determine the contents of the components. Dust ash contains a broad range of potassium, sodium, zinc, and chlorine; therefore, the traditional X-ray fluorescence spectrometry (XRF) exceeds the range of the work curve.
To develop a method for the determination of 14 components in the dust ash with a broad concentration range of potassium, sodium, zinc, and chlorine.
Standard reagents of potassium chloride, sodium chloride, and zinc oxide were added to commercially available iron ore standards in a quantitative manner to provide a new series of calibration samples with wide ranges of potassium, sodium, zinc, and chlorine contents. The 14 components in the dust ash were determined by XRF spectrometry with a powder-pelleting-lined boric acid preparation.
The measurement ranges of potassium, sodium, zinc, and chlorine were 1.36%-12.00%, 0.43%-6.85%, 0.24%-35.00%, and 0.25%-10.00%, respectively. The results of the 14 components in the dust ash were consistent with those of the traditional method, yielding a relative standard deviation of < 5.2% (n=7).
XRF spectrometry with the powder-pelleting-lined boric acid preparation showed good accuracy and precision during the determination of 14 components in the dust ash.
[1] | 王彩虹, 蒋心泰. 酒钢除尘灰性质分析及应用技术[J]. 中国冶金, 2019, 29(3): 57-62. Wang C H, Jiang X T. Property analysis and utilization technology of dust ash in Jiusteel[J]. China Metallurgy, 2019, 29(3): 57-62. |
[2] | 钱峰, 于淑娟, 侯洪宇, 等. 烧结机头电除尘灰资源化再利用[J]. 钢铁, 2019, 50(12): 67-72. Qian F, Yu S J, Hou H Y, et al. Recycling of the electric dust in sintering machine head[J]. Iron and Steel, 2019, 50(12): 67-72. |
[3] | 马贵生, 夏秋雨, 张树华, 等. 钢厂高炉Zn负荷控制与含铁尘泥利用研究[J]. 烧结球团, 2020, 45(5): 77-82. Ma G S, Xia Q Y, Zhang S H, et al. Research on Zn load control and utilization of ferrous dust in blast furnace of steel plant[J]. Sintering and Pelletizing, 2020, 45(5): 77-82. |
[4] | Jalkanen H, Oghbasialsie H, Raipala K. Recycling of steelmaking dusts: The radust concept[J]. Journal of Mining and Metallurgy (Section B: Metallurgy), 2005, 41(1): 1-16. doi: 10.2298/JMMB0501001J |
[5] | 王庆祥, 尹坚. 湘钢1号高炉碱金属行为[J]. 中国冶金, 2005, 15(2): 18-20. doi: 10.3969/j.issn.1006-9356.2005.02.004 Wang Q X, Yin J. Alkalis behavior in No. 1 BF of Xiangtan iron and steel company[J]. China Metallurgy, 2005, 15(2): 18-20. doi: 10.3969/j.issn.1006-9356.2005.02.004 |
[6] | 秦立浩, 墙蔷, 阳红辉, 等. 烧结机头电除尘灰的分级利用[J]. 钢铁研究学报, 2020, 32(9): 802-808. Qin L H, Qiang Q, Yang H H, et al. Classified utilization of sintering EAF dust[J]. Journal of Iron and Steel Research, 2020, 32(9): 802-808. |
[7] | She X F, Wang J S, Xue Q G, et al. Basic properties of steel plant dust and technological properties of direct reduction[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(3): 277-284. doi: 10.1007/s12613-011-0434-9 |
[8] | 张静, 薛彦辉, 李伟杰, 等. 烧结机头灰化学浸出试验研究[J]. 烧结球团, 2020, 45(1): 77-81. Zhang J, Xue Y H, Li W J, et al. Experimental study on chemical leaching of dust at sintering machine feed end[J]. Sintering and Pelletizing, 2020, 45(1): 77-81. |
[9] | 邱红绪, 周建辉, 杨朝帅, 等. 火焰原子吸收光谱法测定烧结机头电除尘灰中银[J]. 冶金分析, 2017, 37(9): 63-67. Qiu H X, Zhou J H, Yang C S, et al. Determination of silver in electrostatic precipitator dust of sintering machine head by flame by flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 63-67. |
[10] | 罗永红, 韦真周, 覃辉平, 等. 乙醇浸泡-活性炭富集火焰原子吸收光谱法测定烧结机头电除尘灰中金[J]. 冶金分析, 2017, 37(6): 44-49. Luo Y H, Wei Z Z, Qin H P, et al. Determination of gold in electrostatic precipitator dust of sinter machine head by flame atomic absorption spectrometry after ethanol immersion-activated carbon enrichment[J]. Metallurgical Analysis, 2017, 37(6): 44-49. |
[11] | 夏辉, 王小强, 何沙白, 等. 电感耦合等离子体原子发射光谱法测定高碳除尘灰中11种元素[J]. 冶金分析, 2016, 36(3): 44-48. Xia H, Wang X Q, He S B, et al. Determination of eleven elements in high carbon dedusting ash by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 44-48. |
[12] | 任玲玲, 谭胜楠, 李建朝. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80. Ren L L, Tan S N, Li J C. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80. |
[13] | 谢忠信, 赵宗铃, 张玉斌, 等. X射线光谱分析[M]. 北京: 科学出版社, 1982: 249-275. Xie Z X, Zhao Z L, Zhang Y B, et al. X-ray fluorescence spectrometer[M]. Beijing: Science Press, 1982: 249-275. |
[14] | 范佳慧, 周莉莉, 朱春要, 等. 熔融制样-X射线荧光光谱法测定除尘灰中10种组分[J]. 冶金分析, 2019, 29(3): 61-66. Fan J H, Zhou L L, Zhu C Y, et al. Determination of ten components in dust ash by X-ray fluorescence spectrometry with fusion sample preparation technique[J]. Metallurgical Analysis, 2019, 29(3): 61-66. |
[15] | 曾江萍, 张莉娟, 李小莉, 等. 超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J]. 冶金分析, 2015, 35(7): 37-43. Zeng J P, Zhang L J, Li X L, et al. Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Metallurgical Analysis, 2015, 35(7): 37-43. |
[16] | 李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843. Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843. |
[17] | 修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526-532. Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526-532. |
[18] | 唐梦奇, 刘顺琼, 袁焕明, 等. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟[J]. 岩矿测试, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012 Tang M Q, Liu S Q, Yuan H M, et al. Determination of fluorine in import copper ores by wavelength dispersive X-ray fluorescence spectrometry with pressed powder preparation[J]. Rock and Mineral Analysis, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012 |
[19] | 张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 1090-1097. Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 1090-1097. |
[20] | 王佳妮, 张晗, 洪子肖, 等. X射线荧光光谱法测定螺旋藻中23种微量元素[J]. 分析试验室, 2016, 35(2): 130-134. Wang J N, Zhang H, Hong Z X, et al. Determination of 23 trace elements in spirulina using X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(2): 130-134. |
[21] | 刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677. Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. |
[22] | 刘菊琴, 李小莉. 波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物、水系沉积物、岩石和土壤样品中15种稀土元素[J]. 冶金分析, 2018, 38(5): 7-12. Liu J Q, Li X L. Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion-energy dispersion combined type X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2018, 38(5): 7-12. |
[23] | 李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007 Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007 |
[24] | 罗立强, 詹秀春, 李国会. X射线荧光光谱分析[M]. 北京: 化学工业出版社, 2015: 117-119. Luo L Q, Zhan X C, Li G H. X-ray fluorescence spectrometer[M]. Beijing: Chemical Industry Press, 2015: 117-119. |
[25] | 殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J]. 冶金分析, 2018, 38(4): 1-10. Yin H M, Du Z Y, Li Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4): 1-10. |
[26] | 殷惠民, 杜祯宇, 任立军, 等. 波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J]. 冶金分析, 2018, 38(7): 1-11. Yin H M, Du Z Y, Ren L J, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(7): 1-11. |
[27] | 夏传波, 姜云, 郑建业, 等. X射线荧光光谱法测定地质样品中氯的含量[J]. 理化检验(化学分册), 2017, 53(7): 775-779. Xia C B, Jiang Y, Zheng J Y, et al. XRFs determination of chlorine in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 53(7): 775-779. |
[28] | 王德全, 于青. 粉末压片-射线荧光光谱法测定高炉除尘灰中钾铅锌砷[J]. 冶金分析, 2014, 34(9): 34-38. Wang D Q, Yu Q. Determination of potassium lead, zinc and arsenic in blast furnace dust by X-ray fluorescence spectrometry with pressed powder pallet[J]. Metallurgical Analysis, 2014, 34(9): 34-38. |