Citation: | DANG Ming-ming, YANG Ping, LEI Yong, WEN Zhi-min, ZHANG Bi-lan. Comparison of Two Different Sample Digestion Methods for Determination of Tungsten, Molybdenum, and Bismuth in Polymetallic Ore by Inductively Coupled Plasma-Optical Emission Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 603-611. doi: 10.15898/j.cnki.11-2131/td.202103050032 |
Currently, tungsten, molybdenum, and bismuth contents are mainly determined by the traditional potassium thiocyanate colorimetric method and EDTA volumetric method. These methods are based on single-element analysis, which has a complicated operation process, low analysis efficiency, and long detection cycle. It is difficult to meet the requirements of accurate and rapid determination of many samples.
To improve the traditional single-element analysis method for the determination of tungsten, molybdenum, and bismuth in polymetallic ore.
A rapid method for the simultaneous determination of tungsten, molybdenum, and bismuth in the ore sample was developed by comparing the two digestion methods of HCl-H3PO4-HClO4-HNO3 and HCl-HClO4-HNO3, and was subsequently combined with inductively coupled plasma-optical emission spectrometry.
Tungsten, molybdenum, and bismuth in the sample were digested more thoroughly using the four-acid digestion method with a reasonable addition of phosphoric acid. The relative error between the determined and certified values of each element ranged from -5.36% to -1.39%, which indicated higher accuracy. The relative standard deviation was ≤ 4.18%, and the detection limits of the method ranged from 0.0027% to 0.0037%. The method was employed for the analysis of actual samples of the polymetallic ore from a certain area in Chenzhou, Hunan Province. The recovery of each element ranged from 95.0% to 103.0%. All the technical indexes were better than those of the three-acid digestion method.
The developed method significantly improved the analysis efficiency and gave accurate and reliable results. The method has been verified by actual samples and is suitable for batch detection of tungsten, molybdenum, bismuth, and other major and trace elements in the polymetallic ore samples.
[1] | 党铭铭, 刘民华, 伍惠玲, 等. 金属矿中钨钼铋检测方法研究综述[J]. 云南化工, 2019, 46(6): 1-12. Dang M M, Liu M H, Wu H L, et al. Survey on detection methods of tungsten, molybdenum and niobium in metal ore[J]. Yunnan Chemical Technology, 2019, 46(6): 1-12. |
[2] | 夏辉, 王小强, 杜天军, 等. 五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多种元素的对比研究[J]. 岩矿测试, 2015, 34(3): 297-301. Xia H, Wang X Q, Du T J, et al. Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J]. Rock and Mineral Analysis, 2015, 34(3): 297-301. |
[3] | 《岩石矿物分析》编委会. 岩石矿物分析(第四版第三分册)[M]. 北京: 地质出版社, 2011: 185-325. Editorial board of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition, The third volume)[M]. Beijing: Geological Publishing House, 2011: 185-325. |
[4] | 宁新霞, 程文康, 史沉勇. 硫氰酸盐分光光度法测定高铜钨精矿中三氧化钨含量[J]. 中国钨业, 2020, 35(1): 67-72. doi: 10.3969/j.issn.1009-0622.2020.01.012 Ning X X, Cheng W K, Shi C Y. Determination of tungsten trioxide in high copper tungsten concentrate by thiocyanate spectrophotometry[J]. China Molybdenum Industry, 2020, 35(1): 67-72. doi: 10.3969/j.issn.1009-0622.2020.01.012 |
[5] | 叶新民. 重量法测定高锡钨精矿中的钨[J]. 化学分析计量, 2016, 25(1): 67-69. doi: 10.3969/j.issn.1008-6145.2016.01.019 Ye X M. Determination of tungsten in tungsten concentrate with high stannum by gravimetric method[J]. Chemical Analysis and Meterage, 2016, 25(1): 67-69. doi: 10.3969/j.issn.1008-6145.2016.01.019 |
[6] | 王海军, 魏曾, 程文康, 等. 硫氰酸盐双波长分光光度法测定高铅矿石中钼量[J]. 理化检验(化学分册), 2016, 52(10): 1234-1236. Wang H J, Wei Z, Cheng W K, et al. Thiocyanate dual wavelength spectrophotometric determination of molybdenum in high lead ores[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(10): 1234-1236. |
[7] | 王娜, 陈枫, 王家松, 等. 酸溶-碱提取-硫氰酸盐分光光度法测定岩石矿物中的钼含量[J]. 理化检验(化学分册), 2019, 55(12): 1455-1459. Wang N, Chen F, Wang J S, et al. Determination of molybdenum content in rock minerals by acid solution-alkali extraction-thiocyanate photometric method[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(12): 1455-1459. |
[8] | 王香婷, 樊雪梅, 王书民. 亚甲基蓝-高碘酸钾催化动力学光度法测定钼尾矿中钼[J]. 冶金分析, 2015, 35(6): 57-60. Wang X T, Fan X M, Wang S M. Determination of molybdenum in molybdenum tailing by methylene blue-potassium periodate catalytic kinetic spectrophotometry[J]. Metallurgical Analysis, 2015, 35(6): 57-60. |
[9] | 周煜, 谭艳山, 朱丽亚, 等. 过氧化钠熔融-硫氰酸铵差示光度法测定钼精矿和钼焙砂中的钼[J]. 冶金分析, 2012, 32(9): 68-72. doi: 10.3969/j.issn.1000-7571.2012.09.016 Zhou Y, Tan Y S, Zhu L Y, et al. Determination of molybdenum in molybdenum concentrate and molybdenum calcine by sodium peroxide fusion-ammonnium thiocyanate differential spectrophotometry[J]. Metallurgical Analysis, 2012, 32(9): 68-72. doi: 10.3969/j.issn.1000-7571.2012.09.016 |
[10] | 彭玲, 梁玉兰. 高氯酸分解8-羟基喹啉重量法测定钼矿中的钼[J]. 中国钨业, 2009, 24(4): 43-45. doi: 10.3969/j.issn.1009-0622.2009.04.012 Peng L, Liang Y L. Molybdenum determination by 8-hydroxyquinoline gravimetric method in perchloric acid[J]. China Molybdenum Industry, 2009, 24(4): 43-45. doi: 10.3969/j.issn.1009-0622.2009.04.012 |
[11] | 屈伟, 周成英, 蔡镠璐, 等. 原子吸收光谱法间接测定钼精矿中钼的研究[J]. 光谱学与光谱分析, 2017, 37(3): 984-989. Qu W, Zhou C Y, Cai L L, et al. Study determination of molybdenum in molybdenum concentrate by atomic absorption spectrometry indirectly[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 984-989. |
[12] | 贺攀红, 龚治湘. 火焰原子吸收光谱法测定矿石中微量钼[J]. 理化检验(化学分册), 2012, 48(3): 114-115. He P H, Gong Z X. Determination of trace molybdenum in ore by flame atomic absorption spectrometry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2012, 48(3): 114-115. |
[13] | 张卓佳, 周智勇, 谢磊. EDTA滴定法测定高铋银精矿中铋[J]. 冶金分析, 2020, 40(4): 76-82. Zhang Z J, Zhou Z Y, Xie L. Determination of bismuth in bismuth-riched silver concentrate by EDTA titration[J]. Metallurgical Analysis, 2020, 40(4): 76-82. |
[14] | 徐智娟. 硫脲分光光度法测定钨钼矿中的铋量[J]. 广东化工, 2019, 46(3): 208-209. Xu Z J. Thiourea spectrophotometric determination of bismuth content in tungsten molybdenum ore[J]. Guangzhou Chemical Industry, 2019, 46(3): 208-209. |
[15] | Ostojic G, Lazic D, Zeljkovic S. Determination of the iron oxide content in bauxite: Comparing ICP-OES with UV-Vis and volumetric analysis[J]. Chemical Papers, 2020, https://doi.org/10.1007/s11696-020-01305-z. doi: 10.1007/s11696-020-01305-z |
[16] | Padmasubashini V, Sunilkumar B, Krishnakumar M, et al. A comparative study of the principal approaches for the estimation of measurement uncertainty for the ICP-OES determinationof the light rare earth elements, yttrium and uranium in rock samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, https://doi.org/10.1007/s10967-020-07214-5. doi: 10.1007/s10967-020-07214-5 |
[17] | Padmasubashini V, Hanuman V V, Singh S B, et al. Evaluation of standard measurement uncertainty from method validation data for the ICP-OES determination of Nb, Ta, Fe, Mn, Ti, Sn, Zr, and winniobite-tantalite samples[J]. Atomic Spetroscopy, 2019, 40(5): 179-187. doi: 10.46770/AS.2019.05.005 |
[18] | Koesmawati T A, Tanuwidjaja S, Nurachman A, et al. Method validation of As, Cd, Cr, Cu, Mn, Ni, Se, and Zn metals in citarum river sediment using inductively coupled plasma-optical emission spectroscopy (ICP-OES)[J]. Journal of Physics: Conference Series, 2021, doi: 10.1088/1742-6596/1764/1/012030. |
[19] | Li X Z, Xiong C H, Sun K, et al. Optimization of ICP-OES parameters for uranium analysis of rock samples[J]. Journal of the Korean Physical Society, 2021, doi. org/10.1007/s40042-021-00093-3. doi: 10.1007/s40042-021-00093-3 |
[20] | 肖芳, 倪文山, 毛香菊, 等. 碱熔-共沉淀富集分离-电感耦合等离子体原子发射光谱法测定矾钛磁铁矿中痕量钪[J]. 冶金分析, 2021, 41(3): 56-61. Xiao F, Ni W S, Mao X J, et al. Determination of trace scandium in vanadium-titanium magnetite by inductively coupled plasma atomic emission spectrometry combined with alkali fusion and co-precipitation enrichment separation[J]. Metallurgical Analysis, 2021, 41(3): 56-61. |
[21] | 严慧, 王干珍, 汤行, 等. 电感耦合等离子体发射光谱法同时测定锑矿石中14种元素的含量[J]. 理化检验(化学分册), 2017, 53(1): 34-38. Yan H, Wang G Z, Tang X, et al. Simultaneous determination of 14 elements in antimony ore by inductively coupled plasma-optical emission spectro-metry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(1): 34-38. |
[22] | 王力强, 王家松, 吴良英, 等. 偏硼酸锂熔融-电感耦合等离子体原子发射光谱法测定锆矿石中10种元素[J]. 冶金分析, 2020, 40(9): 63-69. Wang L Q, Wang J S, Wu L Y, et al. Determination of ten elements in zirconium ores by lithium metaborate fusion-inductively coupled plasma atomic emission spectro-metry[J]. Metallurgical Analysis, 2020, 40(9): 63-69. |
[23] | 杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55-60. Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55-60. |
[24] | 王干珍, 汤行, 叶明, 等. 电感耦合等离子体原子发射光谱法测定含碳质钒矿石中硅铝铁钒磷[J]. 冶金分析, 2016, 36(5): 30-34. Wang G Z, Tang X, Ye M, et al. Determination of silicon, aluminum, iron, vanadium and phosphorous in carbon-bearing vanadium ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(5): 30-34. |
[25] | 王小强, 夏辉, 秦九红, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等7种主次量成分[J]. 岩矿测试, 2017, 36(1): 52-58. Wang X Q, Xia H, Qin J H, et al. Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectro-metry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58. |
[26] | 马海萍, 马玲, 黄勤. 电杆耦合等离子体原子发射光谱法在铋矿石化学物相分析中的应用[J]. 理化检验(化学分册), 2019, 55(12): 1412-1416. Ma H P, Ma L, Huang Q. Application in the phase analysis of bismuth ores by inductively coupled plasma atomic emission spectrometry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(12): 1412-1416. |
[27] | 林学辉, 辛文彩, 徐磊. 过氧化钠熔融-电感耦合等离子体发射光谱法快速测定稀散元素矿石中高含量[J]. 分析试验室, 2018, 37(11): 1324-1326. Lin X H, Xin W C, Xu L. Rapid determination of tungsten in scattered elements mineral by ICP-AES with sodium peroxide alkali fusion[J]. Chinese Journal of Analysis Laboratory, 2018, 37(11): 1324-1326. |
[28] | 成勇, 刘力维, 袁金红, 等. 碱熔-电感耦合等离子体原子发射光谱法测定矾渣中钒硅钙镁铝锰铬钛磷[J]. 冶金分析, 2021, 41(4): 59-67. Cheng Y, Liu L W, Yuan J H, et al. Determination of vanadium, silicon, calcium, magnesium, aluminum, manganese, chromium, titanium and phosphorous in vanadium slag by inductively coupled plasma atomic emission spectrometry after alkali fusion[J]. Metallurgical Analysis, 2021, 41(4): 59-67. |
[29] | 姚钟威, 田学成, 罗义威, 等. 萤石矿中低品位铍的测定[J]. 湿法冶金, 2021, 40(2): 174-177. Yao Z W, Tian X C, Luo Y W, et al. Determination of low grade beryllium in fluorite ore[J]. Hydrometallurgy of China, 2021, 40(2): 174-177. |
[30] | 郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208-215. Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208-215. |
[31] | 王越, 孙景晓, 王现杰, 等. 微波消解-电感耦合等离子体原子发射光谱法测定铁矿石中硅和磷[J]. 冶金分析, 2021, 41(2): 44-48. Wang Y, Sun J X, Wang X J, et al. Determination of silicon and phosphorous in iron ore by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(2): 44-48. |
[32] | 冯晓军, 薛菁, 杨晓燕, 等. 电感耦合等离子体原子发射光谱法测定云南昆阳磷矿黑色页岩中钒钼镍[J]. 冶金分析, 2018, 38(9): 53-58. Feng X J, Xue Q, Yang X Y, et al. Determination of vanadium, molybdenum and nicked in black shale of Kunyang phosphate mine in Yunnan by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 53-58. |
[33] | 黎香荣, 陈永欣, 刘顺琼, 等. 电感耦合等离子体原子发射光谱法测定多金属矿中主次量元素[J]. 冶金分析, 2012, 32(8): 38-41. Li X R, Chen Y X, Liu S Q, et al. Determination of major and minor elements in polymetallic ore by inductively coupled plasma atomic emission spectrometric method[J]. Metallurgical Analysis, 2012, 32(8): 38-41. |
[34] | 李志伟, 赵晓亮, 李珍, 等. 敞口酸溶-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 594-600. Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantaluman dissociated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 594-600. |
[35] | 王佳翰, 汤凯, 龙军桥, 等. 敞开消解-ICP-OES同时测定地球化学样品中硫、磷、砷、硼[J]. 化学试剂, 2018, 40(1): 53-56, 102. Wang J H, Tang K, Long J Q, et al. Simultaneous determination of sulfur, phosphorus, arsenic and boron in geochemical samples by ICP-OES with open digestion[J]. Chemical Reagents, 2018, 40(1): 53-56, 102. |
[36] | 薛宁. 电感耦合等离子体原子发射光谱法测定萤石中11种元素[J]. 冶金分析, 2021, 41(3): 62-67. Xue N. Determination of eleven elements in fluorite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 62-67. |
[37] | 张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930-933. Zhang S L, Wu Z D, Liu X L, et al. ICP-AES determination of Fe, Cu, Pd, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 930-933. |
[38] | 刘正红, 高振广, 陈永红, 等. 电感耦合等离子体原子发射光谱法测定矿石中的钼钨[J]. 黄金, 2019, 40(6): 82-84. Liu Z H, Gao Z G, Chen Y H, et al. Determination of molybdenmum and tungsten in ores by inductively coupled plasma atomic emission spectrometry[J]. Gold, 2019, 40(6): 82-84. |
[39] | 陈思成. 电感耦合等离子体发射光谱法同时测定钨矿石中的铜、铅、锌、钼和三氧化钨[J]. 湖南有色金属, 2018, 34(5): 77-80. Chen S C. Determination of Cu, Pd, Zn, Mo, WO3 in tungsten ore by inductively coupled plasma-optical emission spectrometer[J]. Hunan Nonferrous Metals, 2018, 34(5): 77-80. |
[40] | 张金矿, 于亚辉, 陈浩凤, 等. 密闭消解-ICP-MS法测定地质样品中的痕量铑和铱[J]. 贵金属, 2017, 38(4): 56-65. Zhang J K, Yu Y H, Chen H F, et al. Sealed digestion and ICP-MS determination of trace Rh and Ir in geological samples[J]. Precious Metals, 2017, 38(4): 56-65. |
[41] | 战大川, 阳国运, 武明丽, 等. 电感耦合等离子体原子发射光谱法测定铌和钽[J]. 冶金分析, 2020, 40(5): 57-62. Zhan D C, Yang G Y, Wu M L, et al. Determination of niobium and tantalum in niobium-tantalum concentrate by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2020, 40(5): 57-62. |