Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 4
Article Contents

ZHOU Cheng-ying, LIU Mei-zi, ZHANG Hua, LI Bao-cheng, MAN Xu-guang, LIU Ying, ZANG Mu-wen. Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers[J]. Rock and Mineral Analysis, 2021, 40(4): 619-626. doi: 10.15898/j.cnki.11-2131/td.202005210074
Citation: ZHOU Cheng-ying, LIU Mei-zi, ZHANG Hua, LI Bao-cheng, MAN Xu-guang, LIU Ying, ZANG Mu-wen. Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers[J]. Rock and Mineral Analysis, 2021, 40(4): 619-626. doi: 10.15898/j.cnki.11-2131/td.202005210074

Evaluation of the Interlaboratory Comparison Results of the Chemical Composition of Copper Concentrates and Analysis of the Causes of Outliers

  • BACKGROUND

    Composition analysis of copper concentrate is an important method to determine its quality, especially the analysis of the main element copper. Currently, the main analytical methods for the determination of copper content in copper concentrate include iodometry, inductively coupled plasma-optical emission spectrometry (ICP-OES), flame atomic absorption spectrometry (FAAS), X-ray fluorescence spectrometry (XRF), and electrolytic gravimetric methods.

    OBJECTIVES

    To ensure the uniformity, accuracy, and reliability of the standard values, interlaboratory comparison activities for the determination of copper, magnesium, lead, and zinc in copper concentrate were organized.

    METHODS

    Through the statistical analysis of the test results of the participating laboratories, the technical level and ability of the participating laboratories in the determination of copper, magnesium, lead, and zinc in copper concentrates were evaluated.

    RESULTS

    The results showed that most laboratory results were satisfactory, the satisfaction rate of copper in the copper concentrate was 92.9%, and the average satisfaction rate of copper, magnesium, lead, and zinc was 89.0%. The outliers in a few laboratories were mainly attributed to sample pretreatment, lack of understanding and mastering of the analytical methods by the testing personnel, and other related factors, such as the instrument status.

    CONCLUSIONS

    Because of incomplete sample decomposition, the alkali leaching method could not be used for pretreatment of copper concentrate. Additionally, the alkali fusion method is not recommended for copper concentrate pretreatment because of its complicated process and matrix interference. Acid dissolution titration is preferred as a pretreatment method for the determination of copper in the copper concentrate. The acid-dissolution ICP-OES method for simultaneous determination of Cu, Mg, Pb, and Zn in the copper concentrate is efficient and rapid with satisfactory results. However, further experiments are required to investigate their stabilities.

  • 加载中
  • [1] 吴学伟, 邢希霞. 碘量法测定铜精矿中铜含量不确定度的评定[J]. 山西冶金, 2019, 42(5): 44.

    Google Scholar

    Wu X W, Xing X X. Evaluation of uncertainty in the determination of copper content in copper concentrate by iodometry[J]. Shanxi Metallurgy, 2019, 42(5): 44.

    Google Scholar

    [2] 廖波, 马丽. ICP-OES在火试金重量法分析铜精矿中金、银的研究和应用[J]. 化工管理, 2020, 35(6): 33. doi: 10.3969/j.issn.1008-4800.2020.06.022

    CrossRef Google Scholar

    Liao B, Ma L. Study and application of ICP-OES in the analysis of gold and silver in copper concentrate by fire assay gravimetric method[J]. Chemical Enterprise Management, 2020, 35(6): 33. doi: 10.3969/j.issn.1008-4800.2020.06.022

    CrossRef Google Scholar

    [3] 董天秋. 利用X射线荧光光谱法测定铜精矿中砷、铅和镉[J]. 化学工程与装备, 2019, 48(7): 286.

    Google Scholar

    Dong T Q. Determination of arsenic, lead and cadmium in copper concentrate by X-ray fluorescence spectrometry[J]. Chemical Engineering & Equipment, 2019, 48(7): 286.

    Google Scholar

    [4] 董诚忠, 孙清. 碘量法测定铜精矿中的铜[J]. 黄金, 2020, 41(6): 78-80.

    Google Scholar

    Dong C Z, Sun Q. Determination of copper in copper concentrates by iodometry[J]. Gold, 2020, 41(6): 78-80.

    Google Scholar

    [5] 杨荣清. 浅析短碘量法测定铜精矿中铜含量的影响因素[J]. 科学技术创新, 2018, 22(29): 9-10. doi: 10.3969/j.issn.1673-1328.2018.29.005

    CrossRef Google Scholar

    Yang R Q. Analysis of the factors affecting the determination of copper content in copper concentrate by short iodometry[J]. Scientific and Technological Innovation, 2018, 22(29): 9-10. doi: 10.3969/j.issn.1673-1328.2018.29.005

    CrossRef Google Scholar

    [6] 刘奇, 严静, 王丽丽, 等. 重量法与能量色散X射线荧光光谱法测定铜精矿中硫含量的比较[J]. 世界有色金属, 2020, 35(4): 162. doi: 10.3969/j.issn.1002-5065.2020.04.096

    CrossRef Google Scholar

    Liu Q, Yan J, Wang L L, et al. Comparison of gravimetric and energy dispersive X-ray fluorescence spectrometry for the determination of sulfur in copper concentrates[J]. World Nonferrous Metals, 2020, 35(4): 162. doi: 10.3969/j.issn.1002-5065.2020.04.096

    CrossRef Google Scholar

    [7] 邹游. 铜精矿中铜品位化验结果产生偏差的原因分析[J]. 世界有色金属, 2018, 33(19): 241. doi: 10.3969/j.issn.1002-5065.2018.19.142

    CrossRef Google Scholar

    Zou Y. Cause analysis of deviation of copper grade test results in copper concentrates[J]. World Nonferrous Metals, 2018, 33(19): 241. doi: 10.3969/j.issn.1002-5065.2018.19.142

    CrossRef Google Scholar

    [8] 黎香荣, 罗明贵, 黄园, 等. 光度滴定法测定铜精矿中铜[J]. 冶金分析, 2020, 40(5): 31-33.

    Google Scholar

    Li X R, Luo M G, Huang Y, et al. Determination of copper in copper concentrate by photometric titration[J]. Metallurgical Analysis, 2020, 40(5): 31-33.

    Google Scholar

    [9] 刘久苗, 许敏. ICP光谱法测定铜精矿中砷含量的不确定度评定[J]. 工业技术创新, 2018, 5(5): 68.

    Google Scholar

    Liu J M, Xu M. Evaluation of uncertainty in determination of arsenic in copper concentrate using ICP spectrophotometry[J]. Industrial Technology Innovation, 2018, 5(5): 68.

    Google Scholar

    [10] 张涛. 矿石中金、银含量能力验证结果分析与方法评价[J]. 科技创新与应用, 2017, 7(17): 142-143.

    Google Scholar

    Zhang T. Analysis and method evaluation from the results of proficiency testing of gold and silver content in ores[J]. Technology Innovation and Application, 2017, 7(17): 142-143.

    Google Scholar

    [11] 李晓璐. 实验室间比对情况分析及效果评价[J]. 河北水利, 2019, 31(3): 46-47. doi: 10.3969/j.issn.1004-7700.2019.03.033

    CrossRef Google Scholar

    Li X L. Analysis and effect evaluation of interlaboratory comparison[J]. Hebei Water Resources, 2019, 31(3): 46-47. doi: 10.3969/j.issn.1004-7700.2019.03.033

    CrossRef Google Scholar

    [12] Carlos G, Elena C L, Joerg S. Determination of tropane alkaloids in cereals, tea and herbal infusions: Exploiting proficiency testing data as a basis to derive interlaboratory performance characteristics of an improved LC-MS/MS method[J]. Food Chemistry, 2020, 331: 127260. doi: 10.1016/j.foodchem.2020.127260

    CrossRef Google Scholar

    [13] 刘梅, 尹相余. 浅谈能力验证的选择及结果应用[J]. 中国检验检测, 2020, 28(4): 58-60.

    Google Scholar

    Liu M, Yin X Y. Discussion on the selection and result application of proficiency testing[J]. China Inspection Body & Laboratory, 2020, 28(4): 58-60.

    Google Scholar

    [14] 庞喜斌, 李寅彦, 唐凌天. 从能力验证结果看我国土壤重金属元素检测情况[J]. 冶金分析, 2019, 39(12): 38-42.

    Google Scholar

    Pang X B, Li Y Y, Tang L T. Viewing the detection of heavy metals in soil in China from the results of proficiency testing[J]. Metallurgical Analysis, 2019, 39(12): 38-42.

    Google Scholar

    [15] 姜瀛洲, 王忠, 陈迪. 稳健统计方法崩溃点对能力验证结果评价的影响[J]. 质量与认证, 2018, 12(1): 49-52.

    Google Scholar

    Jiang Y Z, Wang Z, Chen D. Impact of collapse point of robust statistical methods on evaluation of proficiency testing results[J]. China Quality Certification, 2018, 12(1): 49-52.

    Google Scholar

    [16] 刘攀. 主成分分析方法在煤灰特性分析能力验证结果综合评价中的应用[J]. 分析仪器, 2019, 50(2): 77-81. doi: 10.3969/j.issn.1001-232x.2019.02.015

    CrossRef Google Scholar

    Liu P. Comprehensive evaluation of proficiency testing results for characteristics analysis of coal ash based on principle component analysis method[J]. Analytical Instrumentation, 2019, 50(2): 77-81. doi: 10.3969/j.issn.1001-232x.2019.02.015

    CrossRef Google Scholar

    [17] Metody K, Nikolaya V, Olga V, et al. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 119: 76-82. doi: 10.1016/j.sab.2016.03.011

    CrossRef Google Scholar

    [18] 毛燕. 四分位法和迭代法对数据分散的能力验证检测数据统计分析结果的比较[J]. 冶金分析, 2016, 36(5): 76-80.

    Google Scholar

    Mao Y. Statistical analysis results comparison of quartile and iteration used in proficiency testing for data dispersion inspection[J]. Metallurgical Analysis, 2016, 36(5): 76-80.

    Google Scholar

    [19] 高文工, 白伟东, 郭娟, 等. 中低合金钢化学成分能力验证样品制备及均匀性检验流程探讨[J]. 冶金分析, 2019, 39(1): 77-81.

    Google Scholar

    Gao W G, Bai W D, Guo J, et al. Preparation of middle-low alloy steel chemical composition sample for proficiency testing and discussion on homogeneity test procedures[J]. Metallurgical Analysis, 2019, 39(1): 77-81.

    Google Scholar

    [20] 甘露, 罗代洪, 吴淑琪. 钨矿石和锡矿石化学成分分析能力验证结果评价和离群值原因[J]. 岩矿测试, 2015, 34(1): 111-116.

    Google Scholar

    Gan L, Luo D H, Wu S Q. Evaluation of the analytical results of tungsten and tine ores in the proficiency testing program[J]. Rock and Mineral Analysis, 2015, 34(1): 111-116.

    Google Scholar

    [21] 蒋宗莉, 郑超, 吴丽慧. 应对实验室能力验证活动探讨[J]. 环境保护与循环经济, 2013, 35(5): 53-55. doi: 10.3969/j.issn.1674-1021.2013.05.018

    CrossRef Google Scholar

    Jiang Z L, Zheng C, Wu L H. Discussion on coping with laboratory proficiency testing activities[J]. Environmental Protection and Circular Economy, 2013, 35(5): 53-55. doi: 10.3969/j.issn.1674-1021.2013.05.018

    CrossRef Google Scholar

    [22] 臧慕文, 柯瑞华. 成分分析中的数理统计及不确定度评定概要[M]. 北京: 中国质检出版社&中国标准出版社, 2012.

    Google Scholar

    Zang M W, Ke R H. Summary of mathematical statistics and uncertainty evaluation in component analysis[M]. Beijing: China Quality Inspection Press & China Standard Press, 2012.

    Google Scholar

    [23] 马捷, 关淑君, 茅祖兴. 能力验证及其结果处理与评价[M]. 北京: 中国质检出版社&中国标准出版社, 2016.

    Google Scholar

    Ma J, Guan S J, Mao Z X. Processing and evaluation of proficiency testing and its results[M]. Beijing: China Quality Inspection Press & China Standard Press, 2016.

    Google Scholar

    [24] 吕庆成, 任利华, 栾雪枫. 自动电位滴定法测定铜精矿中的铜[J]. 冶金与材料, 2020, 40(4): 69. doi: 10.3969/j.issn.1674-5183.2020.04.040

    CrossRef Google Scholar

    Lv Q C, Ren L H, Luan X F. Determination of copper in copper concentrate by automatic potentiometric titration[J]. Metallurgy and Materials, 2020, 40(4): 69. doi: 10.3969/j.issn.1674-5183.2020.04.040

    CrossRef Google Scholar

    [25] 赵财昌. X射线荧光光谱法在铜精矿元素测定中的应用分析[J]. 当代化工研究, 2018, 18(7): 152-153. doi: 10.3969/j.issn.1672-8114.2018.07.089

    CrossRef Google Scholar

    Zhao C C. Application analysis of X-ray fluorescence spectrometry in elements determination of copper concentrate[J]. Modern Chemical Research, 2018, 18(7): 152-153. doi: 10.3969/j.issn.1672-8114.2018.07.089

    CrossRef Google Scholar

    [26] 颜立新, 刘金优, 杨琛, 等. 铜精矿中铜的电解重量法测定及其与碘量法测定的比较[J]. 中国无机分析化学, 2019, 9(4): 31-35. doi: 10.3969/j.issn.2095-1035.2019.04.008

    CrossRef Google Scholar

    Yan L X, Liu J Y, Yang C, et al. Determination of copper content in copper concentrates by electro gravimetric method and its comparison with iodometric method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 31-35. doi: 10.3969/j.issn.2095-1035.2019.04.008

    CrossRef Google Scholar

    [27] 张艳, 郝辉, 雒虹. 电感耦合等离子体质谱(ICP-MS)法测定矿石中的铼——三种前处理方法比较[J]. 中国无机分析化学, 2016, 6(1): 34-35. doi: 10.3969/j.issn.2095-1035.2016.01.009

    CrossRef Google Scholar

    Zhang Y, Hao H, Luo H. Comparison of three sample pretreatment methods in determination of rhenium in ores by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 34-35. doi: 10.3969/j.issn.2095-1035.2016.01.009

    CrossRef Google Scholar

    [28] 雷占昌, 韩斯琴图, 蒋常菊, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-330.

    Google Scholar

    Lei Z C, Han S Q T, Jiang C J, et al. Determination of tin in primary ores by inductively coupled plasma-mass spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-330.

    Google Scholar

    [29] 姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1031-1034.

    Google Scholar

    Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by inductively coupled plasma atomic emission spectrometry combined with alkali fusion and separation using ion exchange resin[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1031-1034.

    Google Scholar

    [30] 门倩妮, 沈平, 甘黎明, 等. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测试, 2020, 39(1): 59-60.

    Google Scholar

    Men Q N, Shen P, Gan L M, et al. Determination of rare earth elements and Nb, Ta, Zr, Hf in polymetallic mineral samples by inductively coupled plasma-mass spectrometry coupled with open acid dissolution and lithium metaborate alkali fusion[J]. Rock and Mineral Analysis, 2020, 39(1): 59-60.

    Google Scholar

    [31] 石岭. ICP-AES法测定铜精矿中铅含量[J]. 新疆有色金属, 2019, 28(2): 97-98.

    Google Scholar

    Shi L. Determination of lead in copper concentrate by inductively coupled plasma atomic emission spectrometry[J]. Xinjiang Nonferrous Metals, 2019, 28(2): 97-98.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(2114) PDF downloads(184) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint