2023 Vol. 42, No. 8
Article Contents

SUN Kai, LIU Xiaoyang, HE Shengfei, GONG Penghui, XU Kangkang, REN Junping, ZHANG Hang, LU Yiguan, QIU Lei. 2023. Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources. Geological Bulletin of China, 42(8): 1258-1275. doi: 10.12097/j.issn.1671-2552.2023.08.002
Citation: SUN Kai, LIU Xiaoyang, HE Shengfei, GONG Penghui, XU Kangkang, REN Junping, ZHANG Hang, LU Yiguan, QIU Lei. 2023. Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources. Geological Bulletin of China, 42(8): 1258-1275. doi: 10.12097/j.issn.1671-2552.2023.08.002

Geochemical characteristics of stream sediment in Tanzania and prospective analysis of gold resources

  • Various landscapes are found in Tanzania.Bedrocks are well-exposed and streams are well-grained in most areas.This paper has ascertained the geochemical background of Tanzania, clarified the specific geological and geochemical significance of elements-rich area, by conducting national scale(1:1 000 000) stream sediment geochemical mapping.This work has collected 4258 samples in total.71 elements for each sample are analyzed by matched 13 analytic methods, including ICP-MS and XRF.The results show that the Au anomaly is distributed mainly in the greenstone belt of Lake Victoria, and there is a continuation of gold-rich terrain in the surrounding mobile belt.Medium and medium-high temperature metallogenic elements such as Ag, Cu, Pb, Zn, W, Sn, Mo, Nb and Ta anomalies are mainly distributed in the Kibara tin metallogenic belt, Malagarasi platform and volcanic rocks of East African Rift System(EARS).The anomalies of Ni, Co, Cr and V are mainly related to mafic-ultramafic rocks which are located in the Malagarasi platform, Ubendian Mobile Belt and volcanic rocks of EARS.This study delineates 31 gold geochemical blocks and 8 gold metallogenic prospective areas, and gold resource potential is preliminaries evaluated by geochemical block method.It provides favorable information for development of gold and other mineral exploration and fundamental research in Tanzania.

  • 加载中
  • [1] Barth H. Provisional geological map of Lake Victoria gold fields, Tanzania 1:500 000(with explanation notes)[J]. Geologisches Jahrbuch, 1990, B72: 1-59.

    Google Scholar

    [2] Baudet D. Etude palynologique dans le Protérozoique supérieur du Burundi[J]. Newsletter(IGCP 255), 1988, 1: 1-5.

    Google Scholar

    [3] Borg G, Krogh T. Isotopic age data of single zircons from the Archaæan Sukumaland Greenstone Belt, Tanzania[J]. Journal of African Earth Sciences, 1999, 29(2): 301-312. doi: 10.1016/S0899-5362(99)00099-8

    CrossRef Google Scholar

    [4] Borg G. New aspects of the lithostratigraphy and evolution of the Siga Hills, an Archaean granite-greenstone terrain in NW Tanzania[J]. Zeitschrift fur Angewandte Geologie, 1992, 38: 89-93.

    Google Scholar

    [5] Borg G. The Geita gold deposit in NW Tanzania: Geology, ore petrology, geochemistry and timing of events[J]. Geologisches Jahrbuch, 1994, 100: 545-595.

    Google Scholar

    [6] Cook Y A, Sanislav I V, Hammerli J, et al. A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton[J]. Geoscience Frontiers, 2016, 7(6): 911-926. doi: 10.1016/j.gsf.2015.11.008

    CrossRef Google Scholar

    [7] Daly M. Crustal shear zones in Central Africa: a kinematic approach to Proterozoic tectonics[J]. Episodes, 1988, 11: 5-11. doi: 10.18814/epiiugs/1988/v11i1/003

    CrossRef Google Scholar

    [8] Dawson J. The Neogene-Recent volcanic rocks[J]. Geological Society, London, Memoirs, 2008, 33: 39-77. doi: 10.1144/M33.7

    CrossRef Google Scholar

    [9] Gabert G. Lithostratigraphic and tectonic setting of gold mineralization in the Archean cratons of Tanzania and Uganda, East Africa[J]. Precambrian Research, 1990, 46(1): 59-69.

    Google Scholar

    [10] Gobba J M. Kimberlite exploration in Tanzania[J]. Journal of African Earth Sciences(and the Middle East), 1989, 9(3/4): 565-578.

    Google Scholar

    [11] Kabete J M, Groves D I, Mcnaughton N J, et al. A new tectonic and temporal framework for the Tanzanian Shield: Implications for gold metallogeny and undiscovered endowment[J]. Ore Geology Reviews, 2012a, 48: 88-124. doi: 10.1016/j.oregeorev.2012.02.009

    CrossRef Google Scholar

    [12] Kabete J M, Mcnaughton N J, Groves D I, et al. Reconnaissance SHRIMP U-Pb zircon geochronology of the Tanzania Craton: Evidence for Neoarchean granitoid-greenstone belts in the Central Tanzania Region and the Southern East African Orogen[J]. Precambrian Research, 2012b, 216/219: 232-266.

    Google Scholar

    [13] Kapilima S. Stratigraphische und paläontologische Untersuchungen im Jura un der Kreide des tansanischen Küstenstreifens im Hinterland von Dar-Es Salaam und Bagamoyo[J]. Berliner Geowiss. Abh., 1984, 57: 1-77.

    Google Scholar

    [14] Kent P E, Hunt M, Johnstone M. The geology and geophysics of coastal Tanzania[J]. Geophysical Paper, 1971, 6: 1-101.

    Google Scholar

    [15] Kuehn S, Ogola J, Sango P. Regional setting and nature of gold mineralization in Tanzania and southwest Kenya[J]. Precambrian Research, 1990, 46(1): 71-82.

    Google Scholar

    [16] Kwelwa S D, Sanislav I V, Dirks P H G M, et al. Zircon U-Pb ages and Hf isotope data from the Kukuluma Terrain of the Geita Greenstone Belt, Tanzania Craton: Implications for stratigraphy, crustal growth and timing of gold mineralization[J]. Journal of African Earth Sciences, 2018, 139: 38-54. doi: 10.1016/j.jafrearsci.2017.11.027

    CrossRef Google Scholar

    [17] Lawley C J M, Selby D, Condon D, et al. Palaeoproterozoic orogenic gold style mineralization at the Southwestern Archaean Tanzanian cratonic margin, Lupa Goldfield, SW Tanzania: Implications from U-Pb titanite geochronology[J]. Gondwana Research, 2014, 26(3): 1141-1158.

    Google Scholar

    [18] Leger C, Barth A, Falk D, et al. Explanatory notes for the minerogenic map of Tanzania[J]. Geological Survey of Tanzania, 2015.

    Google Scholar

    [19] Maboko M. The geochemistry of Banded Iron Formations in the Sukumaland Greenstone Belt of Geita, northern Tanzania: Evidence for mixing of hydrothermal and clastic sources of the chemical elements[J]. Tanzania Journal of Science, 2001, 27: 21-36.

    Google Scholar

    [20] Manya S, Kobayashi K, Maboko M A H, et al. Ion microprobe zircon U-Pb dating of the late Archaean metavolcanics and associated granites of the Musoma-Mara Greenstone Belt, Northeast Tanzania: Implications for the geological evolution of the Tanzania Craton[J]. Journal of African Earth Sciences, 2006, 45(3): 355-366. doi: 10.1016/j.jafrearsci.2006.03.004

    CrossRef Google Scholar

    [21] Manya S, Maboko M A H. Dating basaltic volcanism in the Neoarchaean Sukumaland Greenstone Belt of the Tanzania Craton using the Sm-Nd method: implications for the geological evolution of the Tanzania Craton[J]. Precambrian Research, 2003, 121(1): 35-45.

    Google Scholar

    [22] Manya S, Maboko M A H. Geochemistry of the Neoarchaean mafic volcanic rocks of the Geita area, NW Tanzania: Implications for stratigraphical relationships in the Sukumaland greenstone belt[J]. Journal of African Earth Sciences, 2008, 52(4): 152-160.

    Google Scholar

    [23] Mcconnell R B. Outline of the geology of Ufipa and Ubende[J]. Geological Survey Department, Tanganyika Territory, Bulletin, 1950, 19: 62.

    Google Scholar

    [24] Mruma A H. Stratigraphy, Metamorphism and tectonic Evolution of the Early Proterozoic Usagaran Belt, Tanzania[D]. University of Dar es Salaam, 1990.

    Google Scholar

    [25] Petzet A. Deepwater, land discoveries: High-grade East African margin[J]. Oil and Gas Journal, 2012, 110(4): 1-70.

    Google Scholar

    [26] Roberts E M, O Connor P M, Stevens N J, et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa[J]. Journal of African Earth Sciences, 2010, 57(3): 179-212. doi: 10.1016/j.jafrearsci.2009.09.002

    CrossRef Google Scholar

    [27] Sanislav I V, Blenkinsop T G, Dirks P H G M. Archaean crustal growth through successive partial melting events in an oceanic plateau-like setting in the Tanzania Craton[J]. Terra Nova, 2018, 30(3): 169-178. doi: 10.1111/ter.12323

    CrossRef Google Scholar

    [28] Sanislav I V, Wormald R J, Dirks P H G M, et al. Zircon U-Pb ages and Lu-Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt: Implications for crustal growth of the Tanzania Craton[J]. Precambrian Research, 2014, 242: 187-204. doi: 10.1016/j.precamres.2013.12.026

    CrossRef Google Scholar

    [29] Schlüter T. Geology of East Africa[M]. Stuttgart, Germany: Schweizerbart Science Publishers, 1997: 1-484.

    Google Scholar

    [30] Sun K, Zhang L, Zhao Z, et al. Episodic crustal growth in the Tanzania Craton: evidence from Nd isotope compositions[J]. China Geology, 2018, 1(2): 210-224. doi: 10.31035/cg2018025

    CrossRef Google Scholar

    [31] Wang X, Liu X, Han Z, et al. Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China[J]. Journal of Geochemical Exploration, 2015, 154: 32-48. doi: 10.1016/j.gexplo.2015.01.008

    CrossRef Google Scholar

    [32] Xie X, Cheng H. The suitability of flood plain sediment as a global sampling medium: evidence from China[J]. Journal of Geochemical Exploration, 1997, 58(1): 51-62. doi: 10.1016/S0375-6742(96)00051-9

    CrossRef Google Scholar

    [33] Xie X J, Binchuan Y. Geochemical patterns from local to global[J]. Journal of Geochemical Exploration. 1993, 47(1): 109-129.

    Google Scholar

    [34] Zhao G, He F, Dai X, et al. Ultra-low density geochemical mapping in Zimbabwe[J]. Journal of Geochemical Exploration, 2014, 144: 552-571. doi: 10.1016/j.gexplo.2013.11.001

    CrossRef Google Scholar

    [35] 何金祥, 吴智慧. 非洲矿产资源勘探和开发——坦桑尼亚[J]. 中国地质, 1997, 5: 42-44.

    Google Scholar

    [36] 何胜飞, 刘晓阳, 王杰, 等. 非洲中部基巴拉造山带地质特征与资源潜力分析[J]. 地质调查与研究, 2014a, 37(3): 161-168.

    Google Scholar

    [37] 何胜飞, 孙凯, 王杰, 等. 坦桑尼亚西北部卡邦加铜镍硫化物矿床研究进展[J]. 地质调查与研究, 2014b, 37(1): 6-12.

    Google Scholar

    [38] 李欢, 徐国志, 孙璐, 等. 化探综合异常图定量编制方法及应用[J]. 地质通报, 2019, 38(6): 1062-1070.

    Google Scholar

    [39] 李明辉, 陈富荣, 张笑蓉, 等. 皖西大别山区富锌土壤分布特征及成因分析[J]. 地质调查与研究, 2019, (3): 235-240.

    Google Scholar

    [40] 刘军, 朱谷昌. 坦桑尼亚汉德尼金矿床地质特征与找矿方向分析[J]. 地质与勘探, 2012, 48(1): 177-184.

    Google Scholar

    [41] 刘晓阳, 龚鹏辉, 许康康, 等. 坦桑尼亚乌本迪活动带西北部元古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与研究, 2020, 43(1): 5-18.

    Google Scholar

    [42] 吕梦鸿, 刘洪, 黄瀚霄, 等. 水系沉积物地球化学勘查在西藏松多幅的找矿应用[J]. 地质调查与研究, 2019, 42(2): 143-153.

    Google Scholar

    [43] 牟妮妮, 孙祥, 万修权. 西藏米拉山地区化探异常特征与找矿预测[J]. 地质通报, 2020, 39(8): 62-70.

    Google Scholar

    [44] 孙凯, 周肃, 缪振平, 等. 河北峪耳崖金矿苋草沟区次生晕异常及找矿预测[J]. 地质与勘探, 2011, 47(4): 566-576.

    Google Scholar

    [45] 徐善法, 王学求, 张必敏, 等. 中国铀地球化学块体与远景区划分[J]. 地球学报, 2020, 41(6): 49-60.

    Google Scholar

    [46] 许康康, 刘晓阳, 孙凯, 等. 坦桑尼亚乌本迪带内花岗岩类的LA-MC-ICP-MS锆石U-Pb年龄及地质意义[J]. 地质调查与研究, 2020, 43(1): 57-64.

    Google Scholar

    [47] 杨昭颖, 冯磊, 姜德才, 等. 基于邻域约束聚类的地球化学异常提取[J]. 地质通报, 2019, 38(12): 2077-2084.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(1458) PDF downloads(121) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint