2023 Vol. 42, No. 8
Article Contents

JIANG Junsheng, HU Peng, ZHANG Haikun, CHENG Xiang, WANG Jianxiong, XIANG Wenshuai. 2023. The iron ore resource feature and metallogenic regularity in western Africa. Geological Bulletin of China, 42(8): 1276-1290. doi: 10.12097/j.issn.1671-2552.2023.08.003
Citation: JIANG Junsheng, HU Peng, ZHANG Haikun, CHENG Xiang, WANG Jianxiong, XIANG Wenshuai. 2023. The iron ore resource feature and metallogenic regularity in western Africa. Geological Bulletin of China, 42(8): 1276-1290. doi: 10.12097/j.issn.1671-2552.2023.08.003

The iron ore resource feature and metallogenic regularity in western Africa

More Information
  • In recent years, with the continuous breakthrough in the iron ore prospecting work of western Africa, its resource potential has once again attracted the attention of international mining giants.China is the world's largest consumer of iron ore resources.Thus, the resource characteristics and mineralization regularity of western Africa iron ore are summarized, which could help understand the iron ore resources potential of western Africa and provide basis for the future collaborative deployment of resources.This paper systematically summarizes the iron ore metallogenic geological background and resource endowment characteristics in western Africa.Based on the information of 91 iron ore deposits in 10 major iron-producing countries of western Africa, we classified the genetic types of iron ore in western Africa into BIF(Banded Iron Formations) type, skarn type, magmatic type, laterite type, oolitic ore type.According to the tectonic units of iron ore, 20 metallogenic zones have been divided in western Africa.On this basis, we summarized the spatial distribution regularity and temporal distribution characteristics of iron ore in western Africa.The iron ore deposits in western Africa are widely distributed in space, but they have obvious cluster distribution characteristics.The distribution of different genetic types of iron ore deposits are also different.The BIF type iron ore deposits are mainly produced in the ancient shield area.The laterite iron ore deposits are associated with BIF, which are closely related to tropical climate.The skarn type iron ore deposits are mainly distributed in the boundary of the Pan-African active belt and sedimentary basin.The magmatic type iron ore deposits mainly occur in the gabbro with good differentiation.The oolitic iron ore deposits are mainly developed in the Meso-Cenozoic basins.

  • 加载中
  • [1] Adefila I, Adekeye J I D, Bamigboye O S. Mineralogy and geochemistry of Okofi oolitic iron ore deposit, Central Nigeria: Implication for beneficiation[J]. Journal of Mining and Geology, 2013, 49(2): 111-120.

    Google Scholar

    [2] Ba G A. Contribution a l'etude Geologique et Mineralogique du Giesmentd' Akjoujt, Mauritanie[D]. These de Geologie, Univ. Orleans, 1982: 21-46.

    Google Scholar

    [3] Berge J W. Geology, geochemistry and origin of the Nimba itabirite and associated rocks, Nimba County, Liberia[J]. Economic Geology, 1974, 69: 80-92. doi: 10.2113/gsecongeo.69.1.80

    CrossRef Google Scholar

    [4] Block S, Jessell M, Aillères L, et al. Lower crust exhumation during Paleoproterozoic(Eburnean)orogeny, NW Ghana, West African Craton: Interplay of coeval contractional deformation and extensional gravitational collapse[J]. Precambrian Research, 2016, 274: 82-109. doi: 10.1016/j.precamres.2015.10.014

    CrossRef Google Scholar

    [5] Cope I L, Wikinson J J, Boyce A J, et al. Genesis of the Pic de Fon Iron Oxide Deposit, Simandou range, Republic of Guinea, West Africa[J]. Economic Geology, 2008, 15: 339-360.

    Google Scholar

    [6] Delali D. Hydrothermal alteration interpretation of Landsat and Aster data for iron ore detection in the Sheini Area, North Eastern Ghana[D]. University of Ghana, Legon, 2014: 5-64.

    Google Scholar

    [7] Egal E, Thiéblemont D, Lahondère D, et al. Late Eburnean granitization and tectonics along the western and northwestern margin of the Archean Kénéma-Man domain(Guinea, West African Craton)[J]. Precambrian Research, 2002, 117(1): 57-84.

    Google Scholar

    [8] Frikken P. Marampa and Tonkolili projects, geology and structural mapping[R]. Sierra Leone Diamond Company, 2006: 11-25.

    Google Scholar

    [9] Goodenough K M, Jones D, Ford J, et al. Geological mapping of Sierra Leone: baseline assessment and next steps[R]. British Geological Survey, 2018: 1-15.

    Google Scholar

    [10] Grenholm M, Jessell M, Thébaud N. A geodynamic model for the Paleoproterozoic(ca. 2.27-1.96 Ga)Birimian orogen of the southern West African craton-Insights into an evolving accretionary-collisional orogenic system[J]. Earth Science Reviews, 2019, 192: 138-193. doi: 10.1016/j.earscirev.2019.02.006

    CrossRef Google Scholar

    [11] Grenholm M. The Birimian event in the Baoulé Mossi domain(West African Craton)-regional and global context[M]. Lund University, 2014: 65-162.

    Google Scholar

    [12] Hagemann S, Rosière C A, Gutzmer J, et al. Banded iron formation-related high-grade iron ore[M]. Littleton: Society of Economic Geologists, 2008: 24-26.

    Google Scholar

    [13] Huston D L, Logan G A. Barite, BIFs and bugs: Evidence for the evolution of the Earth's early hydrosphere[J]. Earth and Planetary Science Letters, 2004, 220: 41-55. doi: 10.1016/S0012-821X(04)00034-2

    CrossRef Google Scholar

    [14] Imrana A, Haruna Dr I V. Geology, mineralogy and geochemistry of Koton Karfe Oolitic iron ore deposit, Bida Basin, Kogi State, Nigeria[J]. International Journal of Scientific & Technology Research, 2017, 6(8): 415-426.

    Google Scholar

    [15] Jessell M W, Boamah K, Duodu J A, et al. Geophysical evidence for a major paleochannel within the obosum Group of the Volta Basin, Northern Region, Ghana[J]. Journal of African Earth Sciences, 2015, 112: 586-596. doi: 10.1016/j.jafrearsci.2015.04.007

    CrossRef Google Scholar

    [16] Mansaray L R, Liu L, Zhou J, et al. Alteration mineral mapping for iron prospecting using ETM+ data, Tonkolili iron field, northern Sierra Leone[C]. Proc. of SPIE, 2013, 892102: 1-8.

    Google Scholar

    [17] Markwitz V, Hein K, Jessell M W, et al. Metallogenic portfolio of the West Africa craton[J]. Ore Geology Reviews, 2015, 78: 558-563.

    Google Scholar

    [18] Milési J P, Feybesse J L, Pinna P, et al. Geological map of Africa 1: 10000000[C]// SIGAfrique Project: 20th Conference of African Geology, BRGM, Orléans, France, 2004.

    Google Scholar

    [19] Neybergh H, Laduron D, Martin H, et al. The Vanadiferous magnetite deposits of the Oursi region, Upper-Volta[J]. Economic Geology, 1980, 75: 1042-1052. doi: 10.2113/gsecongeo.75.7.1042

    CrossRef Google Scholar

    [20] Ponsard J F, Roussel J, Villeneuve M. The Pan-African orogenic belt of southern Mauritanides and northern Rokelides(southern Senegal and Guinea, West Africa): gravity evidence for a collisional suture[J]. Journal of African Earth Sciences, 1988, 7: 463-472. doi: 10.1016/0899-5362(88)90090-5

    CrossRef Google Scholar

    [21] Rollinson H. Archaean crustal evolution in West Africa: A new synthesis of the Archaean geology in Sierra Leone, Liberia, Guinea and Ivory Coast[J]. Precambrian Research, 2016, 281: 1-12. doi: 10.1016/j.precamres.2016.05.005

    CrossRef Google Scholar

    [22] S&P Capital. The iron data of western Africa[DB]. https://www.capitaliq.spglobal.cn/web/client?auth=inherit&overridecdc=1&&ignoreidmcontext=1#dashboard/metalsAndMining. 2021: 1-23.

    Google Scholar

    [23] Schwartz M O, Melcher F. The Faleme Iron District, Senegal[J]. Economic Geology, 2004, 99: 917-939. doi: 10.2113/gsecongeo.99.5.917

    CrossRef Google Scholar

    [24] Thiéblemont D, Delor C, Cocherie A, et al. A 3.5 Ga granite-gneiss basement in Guinea: further evidence for early Archean accretion within the West African Craton[J]. Precambrian Research, 2001, 108(3/4): 179-194.

    Google Scholar

    [25] Thiéblemont D, Goujou J C, Egal E, et al. Archean evolution of the Leo Rise and its Eburnean reworking[J]. Journal of African Earth Sciences, 2004, 39: 97-104. doi: 10.1016/j.jafrearsci.2004.07.059

    CrossRef Google Scholar

    [26] Villeneuve M, Bellon H, Corsini M, et al. New investigations in southwestern Guinea: consequences for the Rokelide belt(West Africa)[J]. International Journal of Earth Sciences, 2015, 104(5): 1267-1275. doi: 10.1007/s00531-014-1138-y

    CrossRef Google Scholar

    [27] VilleneuveM, Cornee J J. Structure, evolution and palaeogeography of the West Africa craton and bordering belts during the Neoproterozoic[J]. Precambrian Research, 1994, 69, 307-326. doi: 10.1016/0301-9268(94)90094-9

    CrossRef Google Scholar

    [28] 程裕淇, 赵一鸣, 陆松年. 我国几组主要铁矿类型[J]. 地质科技, 1976, (2): 8-29.

    Google Scholar

    [29] 董少波, 马林霄. 塞拉利昂北方省SOKOYA铁矿地质特征及成因[J]. 现代矿业, 2016a, (2): 86-89.

    Google Scholar

    [30] 董少波, 曾瑞垠, 朱江建, 等. 塞拉利昂北方省Gpafaya铁矿地质特征及成因浅析[J]. 矿产勘查, 2016b, 7(4): 683-690.

    Google Scholar

    [31] 高坪仙. 西非克拉通结晶基底构造分区概述[J]. 国外前寒武纪地质, 1992, (4): 23-25.

    Google Scholar

    [32] 胡鹏, 姜军胜, 张海坤, 等. 西非克拉通优势金属矿产地质特征、成矿作用及开发现状[J]. 华南地质, 2022, 38(4): 614-625.

    Google Scholar

    [33] 胡鹏, 任军平, 向鹏, 等. 非洲大陆构造单元划分[J]. 地质通报, 2022, 41(1): 1-18.

    Google Scholar

    [34] 胡鹏, 曾国平, 刘江涛, 等. 西非铁矿资源现状及潜力分析[J]. 地质学报, 2021, 95(4): 1306-1319.

    Google Scholar

    [35] 华磊, 陈其慎, 邢佳韵, 等. 几内亚矿业开发形势及投资前景[J]. 中国矿业, 2017, 26(11): 103-107.

    Google Scholar

    [36] 李厚民, 王登红, 李立兴, 等. 中国铁矿成矿规律及重点矿集区资源潜力分析[J]. 中国地质, 2012, 39(3): 559-580.

    Google Scholar

    [37] 刘益康, 杨建珍. 西非铁矿带——影响全球铁矿市场格局的热点地区[C]//中国地质学会科技情报专业委员会学术研讨会, 2012: 1-3.

    Google Scholar

    [38] 任军平, 胡鹏, 王杰, 等. 非洲矿业发展概况[J]. 地质学报, 2021, 95(4): 945-961.

    Google Scholar

    [39] 沈宝丰. 中国BIF型铁矿床地质特征和资源远景[J]. 地质学报, 2019, 86(9): 1376-1395.

    Google Scholar

    [40] 王忠, 李建领. 浅析利比里亚BIF型铁矿成因[J]. 内蒙古科技与经济, 2013, 23: 38-40.

    Google Scholar

    [41] 杨崇科, 卢欣祥, 杨延伟, 等. 河南新蔡BIF铁矿床地球化学特征及矿床成因[J]. 地质通报, 2022, 41(7): 1258-1268.

    Google Scholar

    [42] 姚培慧. 中国铁矿志[M]. 北京: 冶金工业出版社, 1993: 25-69.

    Google Scholar

    [43] 元春华, 刘大文, 连长云, 等. 几内亚地质矿产与矿业开发[M]. 北京: 地质出版社, 2017: 23-56.

    Google Scholar

    [44] 张继纯, 严永祥, 王建雄, 等. 西非矿产资源的地质背景及重要成矿分区[J]. 华南地质与矿产, 2019, 35(1): 76-89.

    Google Scholar

    [45] 张招崇, 李厚民, 李建威, 等. 我国铁矿成矿背景与富铁矿成矿机制[J]. 中国科学: 地球科学, 2021, 51(6): 827-852.

    Google Scholar

    [46] 赵一鸣, 林文蔚, 毕承思. 中国矽卡岩矿床[M]. 北京: 地质出版社, 1990: 14-26.

    Google Scholar

    [47] 曾瑞垠, 詹勇, 王柘. 非洲塞拉利昂Sokoya铁矿地质特征及找矿标志[J]. 云南地质, 2016, 35(3): 381-387.

    Google Scholar

    [48] 中国地质调查局武汉地质调查中心. 利比里亚共和国邦矿铁矿特许经营区周边地质测量报告[R]. 2011: 10-25.

    Google Scholar

    [49] 中色地科矿产勘查股份有限公司. 塞拉利昂北方省GPAFAYA矿区铁矿普查报告[R]. 2013: 8-24.

    Google Scholar

    [50] 周久龙, 罗照华, 潘颖, 等. 岩浆型铁矿床中脉状铁矿体的成因: 以承德黑山铁矿床为例[J]. 岩石学报, 2013, 29(10): 3555-3566.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2011) PDF downloads(195) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint