2023 Vol. 42, No. 8
Article Contents

REN Junping, ZHANG Hang, GU Alei, SUN Kai, LI Jianwu, HU Peng, SUN Hongwei, LU Yiguan, WU Xingyuan, ZHOU Zuomin, WANG Jie, ZUO Libo, DONG Jinmeng, ZHANG Jinrui. 2023. Research progress of rare earth element resources in Africa. Geological Bulletin of China, 42(8): 1241-1257. doi: 10.12097/j.issn.1671-2552.2023.08.001
Citation: REN Junping, ZHANG Hang, GU Alei, SUN Kai, LI Jianwu, HU Peng, SUN Hongwei, LU Yiguan, WU Xingyuan, ZHOU Zuomin, WANG Jie, ZUO Libo, DONG Jinmeng, ZHANG Jinrui. 2023. Research progress of rare earth element resources in Africa. Geological Bulletin of China, 42(8): 1241-1257. doi: 10.12097/j.issn.1671-2552.2023.08.001

Research progress of rare earth element resources in Africa

  • Rare earth elements are an essential part for modern high-tech development and have been listed as key mineral resources by major economies in the world.Since 2017, the import trend of rare earth element resources has increased significantly in China.This paper systematically composes and summarizes China's imported rare earth element resource data, distribution of rare earth projects, reserves and resources, deposit types, mineralization ages, typical deposit characteristics and exploration investment in Africa.Africa is rich in rare earth element resources, with advanced resources of rare earth oxides exceeding 10 million tons.In recent years, the exploration and development progress have been enhanced rapidly.The mineralization types can be divided into eight types(complex mineralization period), in which the reserves and resources are mainly concentrated in 12 countries, such as Tanzania, and the igneous carbonatite type and ion adsorption-type REE deposits are currently the focus of exploration and development.The largest exploration investment of rare earth element deposits in Africa occurred in 2012, then continued to decline, reaching a low point in 2017, and the exploration investment has grown very rapidly since 2018.With the gradual production of rare earth element minerals projects in the future internationally, China's dominant global rare earth element market prices will face competition.Rare earth element ore formation conditions are superior in African, and Chinese investment enterprises can use the technical advantages to actively guide and promote African rare-earth element production into our industrial chain.

  • 加载中
  • [1] Andreoli M A G, Hart R J, Ashwal L D, et al. Correlations between U, Th content and metamorphic grade in the Western Namaqualand Belt, South Africa, with implications for radioactive heating of the crust[J]. Journal of Petrology, 2006, 47(6): 1095-1118. doi: 10.1093/petrology/egl004

    CrossRef Google Scholar

    [2] Argus Media. [EB/OL]. (2022-12-13)https://www.argusmedia.com/metals-platform/dashboards/index/4.

    Google Scholar

    [3] Bao Z, Zhao Z. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 2008, 33: 519-535. doi: 10.1016/j.oregeorev.2007.03.005

    CrossRef Google Scholar

    [4] Basson I J, Muntingh A, Jellicoe B C, et al. Structural interpretation of the Steenkampskraal monazite deposit, Western Cape, South Africa[J]. Journal of African Earth Sciences, 2016, 121: 301-315. doi: 10.1016/j.jafrearsci.2016.05.027

    CrossRef Google Scholar

    [5] Bodeving S, Williams-Jones A E, Swinden S. Carbonate-silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia[J]. Lithos, 2017, 268: 383-398.

    Google Scholar

    [6] Broom-Fendley S, Brady A E, Horstwood M S A, et al. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi[J]. Journal of African Earth Sciences, 2017, 134: 10-23. doi: 10.1016/j.jafrearsci.2017.05.020

    CrossRef Google Scholar

    [7] Broom-Fendley S, Heaton T, Wall F, et al. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: the example of Songwe Hill, Malawi[J]. Chemical Geology, 2016, 440: 275-287. doi: 10.1016/j.chemgeo.2016.07.023

    CrossRef Google Scholar

    [8] Buyse F, Dewaele S, Decrée S, et al. Mineralogical and geochemical study of the rare earth element mineralization at Gakara(Burundi)[J]. Ore Geology Reviews, 2020, 124: 103659. doi: 10.1016/j.oregeorev.2020.103659

    CrossRef Google Scholar

    [9] Cahen L, Snelling N J. The Geochronology of Equatorial Africa[M]. North Holland, Amsterdam, 1966: 195.

    Google Scholar

    [10] Cucciniello C, Tucker R D, Jourdan F, et al. The age and petrogenesis of alkaline magmatism in the Ampasindava Peninsula and Nosy Be archipelago, northern Madagascar[J]. Mineralogy and Petrology, 2016, 110: 309-331. doi: 10.1007/s00710-015-0387-1

    CrossRef Google Scholar

    [11] Dawson J B, Hinton R W. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa[J]. Mineralogical Magazine, 2003, 67(5): 921-930. doi: 10.1180/0026461036750151

    CrossRef Google Scholar

    [12] De Toledo M C M, Lenharo S L, Ferrari V C, et al. The compositional evolution of apatite in the weathering profile of the Catalão I alkaline-carbonatitic complex, Goiás, Brazil[J]. Canadian Mineralogist, 2004, 42: 1139-1158. doi: 10.2113/gscanmin.42.4.1139

    CrossRef Google Scholar

    [13] De Waele B, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoprorerozoic growth and evolution of the eastern Congo Ccaton: Its role in the Rodinia puzzle[J]. Precambrian Research, 2008, 180: 127-141.

    Google Scholar

    [14] Decrée S, Cawthorn G, Deloule E, et al. Unravelling the processes controlling apatite formation in the Phalaborwa Complex(South Africa)based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses[J]. Contributions to Mineralogy and Petrology, 2020, 175: 34. doi: 10.1007/s00410-020-1671-6

    CrossRef Google Scholar

    [15] Emsbo P, Mc Laughlin P I, Breit G N, et al. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?[J]. Gondwana Research, 2015, 27: 776-785. doi: 10.1016/j.gr.2014.10.008

    CrossRef Google Scholar

    [16] Estrade G, Marquis E, Smith M, et al. REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar[J]. Ore Geology Reviews, 2019, 112: 103027. doi: 10.1016/j.oregeorev.2019.103027

    CrossRef Google Scholar

    [17] Estrade G, Salvi S, Béziat D. Crystallisation and destabilisation of eudialytegroup minerals in peralkaline granite and pegmatite: a case study from the Ambohimirahavavy complex, Madagascar[J]. Mineralogical Magazine, 2018, 82(2): 375-399. doi: 10.1180/minmag.2017.081.053

    CrossRef Google Scholar

    [18] Ganzeev A A, Grechishchev O K. A new genetic type of rare-metal alkali granites of Madagascar[J]. Russian Geology and Geophysics, 2003, 44: 539-553.

    Google Scholar

    [19] Giebel R J, Gauert C D, Marks M A, et al. Multistage formation of REE minerals in the Palabora Carbonatite Complex, South Africa[J]. American Mineralogist, 2017, 102: 1218-1233. doi: 10.2138/am-2017-6004

    CrossRef Google Scholar

    [20] Gómez-Arias A, Yesares L, Díaz J, et al. Mine waste from carbonatite deposits as potential rare earth resource: Insight into the Phalaborwa(Palabora)Complex[J]. Journal of Geochemical Exploration, 2022, 232: 106884. doi: 10.1016/j.gexplo.2021.106884

    CrossRef Google Scholar

    [21] Goodenough K M, Schilling J, Jonsson E, et al. Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting[J]. Ore Geology Reviews, 2016, 72: 838-856. doi: 10.1016/j.oregeorev.2015.09.019

    CrossRef Google Scholar

    [22] Goodenough K M, Wall F, Merriman D. The rare earth elements: demand, global resources, and challenges for resourcing future generations[J]. Natural Resources Research, 2018, 27: 201-216. doi: 10.1007/s11053-017-9336-5

    CrossRef Google Scholar

    [23] Groves D I, Vielreicher N M. The Phalabowra(Palabora)carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end-member of the iron-oxide copper-gold-rare earth element depositgroups?[J]. Mineralium Deposita, 2001, 36: 189-194. doi: 10.1007/s001260050298

    CrossRef Google Scholar

    [24] Harmer R E, Gittins J. The origin of dolomitic carbonatites: field and experimental constraints[J]. Journal of African Earth Sciences, 1997, 25(1): 5-28. doi: 10.1016/S0899-5362(97)00059-6

    CrossRef Google Scholar

    [25] Hawkesworth C J, Gledhill A R, Roddick J C, et al. Rb-Sr and 40Ar/39Ar studies bearing on models for the thermal evolution of the Damara Belt, Namibia[C]//Evolution of the Damara Orogen of South West Africa/Namibia. Geological Society of South Africa, 1983, 11: 323-338.

    Google Scholar

    [26] Hornig-Kjaarsgaard I. Rare earth elements insöviticc arbonatites and their mineral phases[J]. Journal of Petrology, 1998, 39: 2105-2121. doi: 10.1093/petroj/39.11-12.2105

    CrossRef Google Scholar

    [27] Ihlen P M, Schiellerup H, Gautneb H, et al. Characterization of apatite resources in Norway and their REE potential—a review[J]. Ore Geology Reviews, 2014, 58: 126-147. doi: 10.1016/j.oregeorev.2013.11.003

    CrossRef Google Scholar

    [28] Jung S, Hoffer E, Hoernes S. Neo-Proterozoic rift-related syenites(northern Damara Belt, Namibia): geochemical and Nd-Sr-Pb-O isotope constraints for mantle sources and petrogenesis[J]. Lithos, 2007, 96: 514-435.

    Google Scholar

    [29] Kanazawa Y, Kamitani M. Rare earth minerals and resources in the world[J]. Journal of alloys and compounds, 2006, 408: 1339-1343.

    Google Scholar

    [30] Knoper M W. The mesoproterozoic Steenkampskraal rare-earth element deposit in Namaqualand, South Africa[C]//2010 GSA, Denver Annual Meeting, 2010: 132-134.

    Google Scholar

    [31] Kramm U, Körner T, Kittel M, et al. Triassic emplacement age of the Kalkfeld complex, NW Namibia: implications for carbonatite magmatism and its relationship to the Tristan Plume[J]. International Journal of Earth Sciences, 2017, 106(8): 2797-2813. doi: 10.1007/s00531-017-1460-2

    CrossRef Google Scholar

    [32] Kynicky J, Smith M P, Xu C. Diversity of rare earth deposits: the key example of China[J]. Elements, 2012, 8(5): 361-367. doi: 10.2113/gselements.8.5.361

    CrossRef Google Scholar

    [33] Lehmann B, Nakai S, Höhndorf A, et al. REE mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 985-992. doi: 10.1016/0016-7037(94)90520-7

    CrossRef Google Scholar

    [34] Li Y H M, Zhao W W, Zhou M F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148: 65-95. doi: 10.1016/j.jseaes.2017.08.004

    CrossRef Google Scholar

    [35] Madugalla T, Pitawala H, Karunaratne D. Use of carbonatites in the production of precipitated calcium carbonate: a case study from Eppawala, Sri Lanka[J]. Natural resources research, 2014, 23(2): 217-229. doi: 10.1007/s11053-013-9222-8

    CrossRef Google Scholar

    [36] Melluso L, Morra V, Brotzu P, et al. The Cenozoic alkaline magmatism in central-northern Madagascar: a brief overview[J]. Periodico di Mineralogia, 2007, 76: 169-180.

    Google Scholar

    [37] Milani L, Bolhar R, Frei D, et al. Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa[J]. Mineral Deposita, 2017, 52: 1105-1125. doi: 10.1007/s00126-016-0708-2

    CrossRef Google Scholar

    [38] Miller R M. Neoproterozoic and early Paleozoic rocks of the Damara Orogen[C]//Miller R M. The Geology of Namibia. Geological Survey Windhoek, 2008: 13-1-114-1.

    Google Scholar

    [39] Moldoveanu G A, Papangelakis V G. An overview of rare-earth recovery by ionexchange leaching from ion-adsorption clays of various origins[J]. Mineralogical Magazine, 2016, 80: 63-76. doi: 10.1180/minmag.2016.080.051

    CrossRef Google Scholar

    [40] Nakai S, Masuda A, Lehmann B. La-Ba dating of bastnaesite[J]. American Mineralogist, 1988, 73: 1111-1113.

    Google Scholar

    [41] Packey D J, Kingsnorth D. The impact of unregulated ionic clay rare earth mining in China[J]. Resources Policy, 2016, 48: 112-116. doi: 10.1016/j.resourpol.2016.03.003

    CrossRef Google Scholar

    [42] Read D, Andreoli M A G, Knoper M, et al. The degradation of monazite: implications for the mobility of rare-earth and actinide elements during low-temperature alteration[J]. European Journal of Mineralogy, 2002, 14: 487-498. doi: 10.1127/0935-1221/2002/0014-0487

    CrossRef Google Scholar

    [43] Reischmann T. Precise U/Pb age determination with baddeleyite(ZrO2), a case study from the Phalaborwa igneous complex, South Africa[J]. South African Journal of Geology, 1995, 98: 1-4.

    Google Scholar

    [44] S&P Global Market Intelligence. Commodities, Countries, Screener[EB/OL]. (2022-09-08). https://www.capitaliq.spglobal.2022.

    Google Scholar

    [45] Sanematsu K, Watanabe Y. Characteristics and genesis of ion adsorption-type rare earth element deposits[C]//Verplanck P L, Hitzman M W. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, 2016.

    Google Scholar

    [46] Siedner G, Miller J A. K-Ar age determination on basaltic rocks from South West Africa and their bearing on continental drift[J]. Earth and Planetary Science Letters, 1968, 4: 451-458. doi: 10.1016/0012-821X(68)90023-X

    CrossRef Google Scholar

    [47] Sitnikova M A, Cabo V D, Wall F, et al. Burbankite and pseudomorphs from the Main Intrusion calcite carbonatite, Lofdal, Namibia: association, mineral composition, Raman spectroscopy[J]. Mineralogical Magazine, 2021, 85: 496-513. doi: 10.1180/mgm.2021.56

    CrossRef Google Scholar

    [48] Smithies R H, Marsh J S. The Marinkas Quellen Carbonatite Complex, southern Namibia: carbonatite magmatism with an uncontaminated depleted mantle signature in a continental setting[J]. Chemical Geology, 1998, 148: 201-212. doi: 10.1016/S0009-2541(98)00029-1

    CrossRef Google Scholar

    [49] Snelling N J. Age determinations on three African carbonatites[J]. Nature, 1965, 205: 492. doi: 10.1038/205492a0

    CrossRef Google Scholar

    [50] Tulibonywa T, Manya S, Maboko M A H. Palaeoproterozoic volcanism and granitic magmatism in the Ngualla area of the Ubendian Belt, SW Tanzania: Constraints from SHRIMP U-Pb zircon ages, and Sm-Nd isotope systematic[J]. Precambrian Research, 2015, 256: 120-130. doi: 10.1016/j.precamres.2014.11.003

    CrossRef Google Scholar

    [51] USGS. Mineral commodity summaries 2022: Mineral Commodity Summaries[Z]. Reston: 2022202.2022.

    Google Scholar

    [52] Vartiainen H, Paarma H. Geological characteristics of the Sokli Carbonatite Complex, Finland[J]. Economic Geology, 1979, 74: 1296-1306. doi: 10.2113/gsecongeo.74.5.1296

    CrossRef Google Scholar

    [53] Wall F, Niku-Paavola V N, Storey C, et al. Xenotime-(Y)from carbonatite dykes at Lofdal, Namibia: unusually low LREE: HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon[J]. Canadian Mineralogist, 2008, 46(4): 861-877. doi: 10.3749/canmin.46.4.861

    CrossRef Google Scholar

    [54] Wall F, Rollat A, Pell R S. Responsible sourcing of critical metals[J]. Elements, 2017, 13: 313-318. doi: 10.2138/gselements.13.5.313

    CrossRef Google Scholar

    [55] Walter A V, Nahon D, Flicoteaux R, et al. Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatite-rich carbonatite from Brazil[J]. Earth and Planetary Science Letters, 1995, 136: 591-602. doi: 10.1016/0012-821X(95)00195-I

    CrossRef Google Scholar

    [56] Witt W K, Hammond D P, Hughes M. Geology of the Ngualla carbonatite complex, Tanzania, and origin of the Weathered Bastnaesite Zone REE ore[J]. Ore Geology Reviews, 2019, 105: 28-54. doi: 10.1016/j.oregeorev.2018.12.002

    CrossRef Google Scholar

    [57] Wu F Y, Yang Y H, Li Q L, et al. In situ determination of U-Pb ages and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa[J]. Lithos, 2011, 127(1/2): 309-322.

    Google Scholar

    [58] Zambezi P, Hale M, Voncken J H L, et al. Bastnäsite-(Ce)at the Nkombwa Hill carbonatite complex, Isoka District, northeast Zambia[J]. Mineralogy and Petrology, 1997, 59(3): 239-250.

    Google Scholar

    [59] Zirner A L, Marks M A, Wenzel T, et al. Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland[J]. Lithos, 2015, 228: 12-22.

    Google Scholar

    [60] 工业和信息化部. 自然资源部关于下达2021年第一批稀土开采、冶炼分离总量控制指标的通知[EB/OL]. (2022-12-13)[2021-02-19]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2021/art_b7d3333-a8db441e29083a94f00e662d4.html.

    Google Scholar

    [61] 胡鹏, 任军平, 向鹏, 等. 非洲大陆构造单元划分[J]. 地质通报, 2022, 41(1): 1-18.

    Google Scholar

    [62] 任军平, 胡鹏, 王杰, 等. 非洲矿业发展概况[J]. 地质学报, 2021, 95(4): 945-961. doi: 10.3969/j.issn.0001-5717.2021.04.002

    CrossRef Google Scholar

    [63] 盛和资源控股股份有限公司. 盛和资源控股股份有限公司关于控股公司盛和资源(新加坡)有限公司与Peak Rare Earths Limited签署谅解备忘录的公告[EB/OL]. (2022-12-13)[2022-10-19]. http://data.eastmoney.com/notices/detail/600392/AN202210191579269359.html.

    Google Scholar

    [64] 斯廷坎普斯克拉尔独居石矿业公司网站[EB/OL]. (2022-12-13). https://www.steenkampskraal.com.2022.

    Google Scholar

    [65] 王登红, 郑绵平, 王成辉, 等. 大宗急缺矿产和战略性新兴产业矿产调查工程进展与主要成果[J]. 中国地质调查, 2019, 6(6): 1-11. doi: 10.19388/j.zgdzdc.2019.06.01

    CrossRef Google Scholar

    [66] 王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. 华北地质, 2022, 45(1): 101-110.

    Google Scholar

    [67] 吴兴源, 刘晓阳, 任军平, 等. 坦桑尼亚Panda山碳酸岩地球化学特征及岩石成因研究进展[J]. 地质调查与研究, 2019, 42(2): 86-95.

    Google Scholar

    [68] 张培善. 中国稀土矿床成因类型[J]. 地质科学, 1989, 24: 26-32.

    Google Scholar

    [69] 中国海关. 海关统计数据在线查询平台[EB/OL]. (2022-05-04). http://43.248.49.97/.2022.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(4)

Article Metrics

Article views(3433) PDF downloads(232) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint