[1] |
张乔民, 隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报, 2001, 16(1):28-36.
Google Scholar
|
[2] |
Zhang Q M, Sui S Z. The mangrove wetland resources and their conservation in China[J]. Journal of Natural Resources, 2001, 16(1):28-36.
Google Scholar
|
[3] |
章恒, 王世新, 周艺, 等. 多源遥感影像红树林信息提取方法比较[J]. 湿地科学, 2015, 13(2):145-152.
Google Scholar
|
[4] |
Zhang H, Wang S X, Zhou Y, et al. Comparison of different metho-ds of mangrove extraction from multi-source remote sensing images[J]. Wetland Science, 2015, 13(2):145-152.
Google Scholar
|
[5] |
但新球, 廖宝文, 吴照柏, 等. 中国红树林湿地资源、保护现状和主要威胁[J]. 生态环境学报, 2016, 25(7):1237-1243.
Google Scholar
|
[6] |
Dan X Q, Liao B W, Wu Z B, et al. Resources,conservation status and main threats of mangrove wetlands in China[J]. Ecology and Environmental Sciences, 2016, 25(7):1237-1243.
Google Scholar
|
[7] |
Heumann B W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach[J]. Remote Sensing, 2011, 3(11):2440-2460.
Google Scholar
|
[8] |
Cardenas N Y, Joyce K E, Maier S W. Monitoring mangrove forests: Are we taking full advantage of technology?[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63(7):1-14.
Google Scholar
|
[9] |
Heumann B W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities[J]. Progress in Physical Geography: Earth and Environment, 2011, 35(1):87-108.
Google Scholar
|
[10] |
Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery[J]. Remote Sensing, 2016, 8(1):24.
Google Scholar
|
[11] |
Mondal P, Liu X, Fatoyinbo T E, et al. Evaluating combinations of Sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa[J]. Remote Sensing, 2019, 11(24):2928.
Google Scholar
|
[12] |
蒙良莉. 基于哨兵多源遥感数据的红树林信息提取算法研究[D]. 南宁: 南宁师范大学, 2020.
Google Scholar
|
[13] |
Meng L L. Mangrove information extraction algorithm based on multi-source remote sensing data of sentinel[D]. Nanning: Nanning Normal University, 2020.
Google Scholar
|
[14] |
Jia M M, Wang Z M, Wang C, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17):2043.
Google Scholar
|
[15] |
Farid M F. Comparison of different vegetation indices for assessing mangrove density using Sentinel-2 imagery[J]. International Journal of GEOMATE, 2018, 14(45):42-51.
Google Scholar
|
[16] |
Baloloy A B, Blanco A C, Ana R R C S, et al. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:95-117.
Google Scholar
|
[17] |
Manna S, Raychaudhuri B. Retrieval of leaf area index and stress conditions for Sundarban mangroves using Sentinel-2 data[J]. International Journal of Remote Sensing, 2020, 41(3):1019-1039.
Google Scholar
|
[18] |
徐芳, 张英, 翟亮, 等. 基于Sentinel-2的潮间红树林提取方法[J]. 测绘通报, 2020(2):49-54.
Google Scholar
|
[19] |
Xu F, Zhang Y, Zhai L, et al. Extraction method of intertidal mangrove by using Sentinel-2 images[J]. Bulletin of Surveying and Mapping, 2020(2):49-54.
Google Scholar
|
[20] |
Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7):1459-1470.
Google Scholar
|
[21] |
王利军, 郭燕, 王来刚, 等. GF6卫星红边波段对春季作物分类精度的影响[J]. 河南农业科学, 2020, 49(6):165-173.
Google Scholar
|
[22] |
Wang L J, Guo Y, Wang L G, et al. Impact of red-edge waveband of GF6 satellite on classification accuracy of spring crops[J]. Journal of Henan Agricultural Sciences, 2020, 49(6):165-173.
Google Scholar
|
[23] |
梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10):1168-1179.
Google Scholar
|
[24] |
Liang J, Zheng Z W, Xia S T, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10):1168-1179.
Google Scholar
|
[25] |
姚保民, 王利民, 王铎, 等. 高分六号卫星WFV新增谱段对农作物识别精度的改善[J]. 卫星应用, 2020(12):31-34.
Google Scholar
|
[26] |
Yao B M, Wang L M, Wang D, et al. Improvement of the accuracy of crop recognition by the newly added spectrum of the GF-6 satellite WFV[J]. Satellite Application, 2020(12):31-34.
Google Scholar
|
[27] |
张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.
Google Scholar
|
[28] |
Zhang Q Y, Li Z, Xia C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. Journal of Geo-Information Science, 2019, 21(10):1619-1628.
Google Scholar
|
[29] |
Xia Q, Qin C Z, Li H, et al. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery[J]. Remote Sensing, 2018, 10(9):1343.
Google Scholar
|
[30] |
Zhang X H, Treitz P M, Chen D M, et al. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 62:201-214.
Google Scholar
|
[31] |
Rogers K, Lymburner L, Salum R, et al. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data[J]. Hydrobiologia, 2017, 803(1):49-68.
Google Scholar
|
[32] |
Jia M M, Wang Z M, Zhang Y Z, et al. Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province,China,influenced by human and natural factors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):311-323.
Google Scholar
|
[33] |
Jia M M, Wang Z M, Zhang Y Z, et al. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:535-545.
Google Scholar
|
[34] |
陆春玲, 白照广, 李永昌, 等. 高分六号卫星技术特点与新模式应用[J]. 航天器工程, 2021, 30(1):7-14.
Google Scholar
|
[35] |
Lu C L, Bai Z G, Li Y C, et al. Technical characteristic and new mode applications of GF-6 satellite[J]. Spacecraft Engineering, 2021, 30(1):7-14.
Google Scholar
|
[36] |
张威, 陈正华, 王纪坤. 广西北部湾海岸带红树林变化的遥感监测[J]. 广西大学学报(自然科学版), 2015, 40(6):1570-1576.
Google Scholar
|
[37] |
Zhang W, Chen Z H, Wang J K. Monitoring the areal variation of mangrove in Beibu Gulf coast of Guangxi China with remote sensing data[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(6):1570-1576.
Google Scholar
|
[38] |
Pettorelli N, Ryan S, Mueller T, et al. The normalized difference vegetation index (NDVI):Unforeseen successes in animal ecology[J]. Climate Research, 2011, 46(1):15-27.
Google Scholar
|
[39] |
Gao B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
Google Scholar
|
[40] |
Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing, 1997, 18(12):2691-2697.
Google Scholar
|
[41] |
Gower J, Hu C M, Borstad G, et al. Ocean color satellites show extensive lines of floating sargassum in the Gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12):3619-3625.
Google Scholar
|
[42] |
Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
Google Scholar
|
[43] |
Gao B C, Li R R. FVI-A floating vegetation index formed with three near-IR channels in the 1.0-1.24 μm spectral range for the detection of vegetation floating over water surfaces[J]. Remote Sensing, 2018, 10(9):1421.
Google Scholar
|