China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

TIAN Chen, ZHANG Jinlong, JIN Yirong, DONG Shiyuan, WANG Bin, ZHANG Naixiang. 2023. A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm. Remote Sensing for Natural Resources, 35(1): 49-56. doi: 10.6046/zrzyyg.2022045
Citation: TIAN Chen, ZHANG Jinlong, JIN Yirong, DONG Shiyuan, WANG Bin, ZHANG Naixiang. 2023. A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm. Remote Sensing for Natural Resources, 35(1): 49-56. doi: 10.6046/zrzyyg.2022045

A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm

  • With 14 types of multi-feature information, such as spectrum, index, and texture, of remote sensing images from satellite Sentinel-2 as input and using the Bayesian optimization algorithm, this study designed the BO-XGBoost method used to automatically obtain the optimal hyperparameter combination. This method was successfully applied to the information extraction of cyanobacteria in Yangcheng Lake in 2021. The results show that: ① The optimal hyperparameter combination was obtained using the Bayesian optimization algorithm, and then the BO-XGBoost cyanobacteria classification model was established through obtaining. The training results performed well on the test and training sets, with an accuracy rate of up to 96.07%; ② The BO-XGBoost method was applied to the images used in the sample set. The comparison between the cyanobacteria identification results and the manual interpretation results shows that the two methods yielded roughly the same spatial distribution of cyanobacteria, with a lowest intersection over union (IoU) of 41.31%; ③ To evaluate the applicability of the BO-XGBoost method in other periods, images of other periods were selected for the information extraction of cyanobacteria. As a result, both BO-XGBoost and manual interpretation also yielded roughly the same spatial distribution of cyanobacteria, with a lowest IoU of 43.85%.
  • 加载中
  • [1] 胡智华, 林妙丽, 李港, 等. 城市闸控河流浮游植物群落结构特征及影响因素[J]. 环境科学学报, 2021, 41(9):3631-3640.

    Google Scholar

    [2] Hu Z H, Lin M L, Li G, et al. Phytoplankton community characteristics and influencing factors of the urban gate-controlled rivers[J]. Acta Scientiae Circumstantiae, 2021, 41(9):3631-3640.

    Google Scholar

    [3] 岩腊, 龙笛, 白亮亮, 等. 基于多源信息的水资源立体监测研究综述[J]. 遥感学报, 2020, 24(7):787-803.

    Google Scholar

    [4] Yan L, Long D, Bai L L, et al. A review on water resources stereoscopic monitoring systems based on multisource data[J]. National Remote Sensing Bulletin, 2020, 24(7):787-803.

    Google Scholar

    [5] 谢勇, 李凯云, 李家国, 等. Sentinel-2A影像珠海市污染水体识别[J]. 遥感信息, 2021, 36(3):1-9.

    Google Scholar

    [6] Xie Y, Li K Y, Li J G, et al. Water pollution identification in Zhuhai City based on Sentinel-2A imagery[J]. Remote Sensing Information, 2021, 36(3):1-9.

    Google Scholar

    [7] 邱亚会, 卢剑波. 浒苔遥感监测研究进展[J]. 生态学报, 2015, 35(15):4977-4985.

    Google Scholar

    [8] Qiu Y H, Lu J B. Advances in the monitoring of Enteromorpha prolifera using remote sensing[J]. Acta Ecologica Sinica, 2015, 35(15):4977-4985.

    Google Scholar

    [9] Xing Q G, Hu C M. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data:Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178:113-126.

    Google Scholar

    [10] 陈春波, 周宝同, 田永中, 等. 环境一号卫星多光谱数据在巢湖动态监测中的应用[J]. 中国环境监测, 2014, 30(1):200-204.

    Google Scholar

    [11] Chen C B, Zhou B T, Tian Y Z, et al. Application of environmental satellite HJ1A/1B-CCD data for Cyanobacteria dynamic monitoring in Chaohu Lake[J]. Environmental Monitoring of China, 2014, 30(1):200-204.

    Google Scholar

    [12] Hu C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.

    Google Scholar

    [13] Fang C, Song K, Shang Y, et al. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) Algorithm[J]. Journal of Environmental Informatics, 2018:54-68.

    Google Scholar

    [14] Otukei J R, Blaschke T. Land cover change assessment using decision trees,support vector machines and maximum likelihood classification algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12:27-31.

    Google Scholar

    [15] 李旭青, 刘世盟, 李龙, 等. 基于RF算法优选多时相特征的冬小麦空间分布自动解译[J]. 农业机械学报, 2019, 50(6):218-225.

    Google Scholar

    [16] Li X Q, Liu S M, Li L, et al. Automatic interpretation of spatial distribution of winter wheat based on random forest algorithm to optimize multi-temporal features[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6):218-225.

    Google Scholar

    [17] 李苓苓, 潘耀忠, 张锦水, 等. 支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法[J]. 农业工程学报, 2010, 26(9):210-217.

    Google Scholar

    [18] Li L L, Pan Y Z, Zhang J S, et al. Method of winter wheat planting area estimation based on support vector machine and post-classification changed vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9):210-217.

    Google Scholar

    [19] 赵莲, 张锦水, 胡潭高, 等. 变端元混合像元分解冬小麦种植面积测量方法[J]. 国土资源遥感, 2011, 23(1):66-72.doi:10.6046/gtzyyg.2011.01.13.

    Google Scholar

    [20] Zhao L, Zhang J S, Hu T G, et al. The application of the dynamic endmember linear spectral unmixing model to winter wheat area estimation[J]. Remote Sensing for Land and Resources, 2011, 23(1):66-72.doi:10.6046/gtzyyg.2011.01.13.

    Google Scholar

    [21] 王怡人, 王胜强, 喻樾, 等. 一种提取南黄海浒苔的自适应阈值遥感算法[J]. 遥感信息, 2021, 36(2):120-129.

    Google Scholar

    [22] Wang Y R, Wang S Q, Yu Y, et al. An adaptive threshold algorithm for detecting ulva prolifera in southern Yellow Sea by remote sensing[J]. Remote Sensing Information, 2021, 36(2):120-129.

    Google Scholar

    [23] Chen T W, Guestrin C. XGBoost:A scalable tree boosting system[C]// 22nd ACM SIGKDD International Conference.ACM, 2016.

    Google Scholar

    [24] 卢雪梅, 苏华. 基于OLCI数据的福建近海悬浮物浓度遥感反演[J]. 环境科学学报, 2020, 40(8):2819-2827.

    Google Scholar

    [25] Lu X M, Su H. Retrieving total suspended matter concentration in Fujian coastal waters using OLCI data[J]. Acta Scientiae Circumstantiae, 2020, 40(8):2819-2827.

    Google Scholar

    [26] 黄宇, 潘励. 基于显著性图像与纹理特征的遥感影像云检测[J]. 测绘地理信息, 2021, 46(2):16-19.

    Google Scholar

    [27] Huang Y, Pan L. Cloud detection of remote sensing images based on significance maps and texture features[J]. Journal of Geomatics, 2021, 46(2):16-19.

    Google Scholar

    [28] 徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.

    Google Scholar

    [29] Xu Y, Zhen J N, Jiang X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. National Remote Sensing Bulletin, 2021, 25(3):737-752.

    Google Scholar

    [30] 李鹏, 冯存前, 许旭光, 等. 一种利用贝叶斯优化的弹道目标微动分类网络[J]. 西安电子科技大学学报, 2021, 48(5):139-148.

    Google Scholar

    [31] Li P, Feng C Q, Xu X G, et al. Ballistic target fretting classification network based on Bayesian optimization[J]. Journal of Xidian University, 2021, 48(5):139-148.

    Google Scholar

    [32] 孙淑文, 夏霆, 杨金艳, 等. 苏州湖泊水源地浮游植物群落特征及营养状况分析[J]. 中国农村水利水电, 2020(8):51-55.

    Google Scholar

    [33] Sun S W, Xia T, Yang J Y, et al. An analysis of the phytoplankton community characteristics and nutrition status in lake-type drinking water sources in Suzhou[J]. China Rural Water and Hydropower, 2020(8):51-55.

    Google Scholar

    [34] 刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.

    Google Scholar

    [35] Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.

    Google Scholar

    [36] Guo X J, Zhang C C, Luo W R, et al. Urban impervious surface extraction based on multi-features and random forest[J]. IEEE Access, 2020, 8:226609-226623.

    Google Scholar

    [37] Bergstra J, Bardenet R, Bengio Y, et al. Algorithms for hyper-parameter optimization[J]. Advances in Neural Information Processing Systems, 2011, 24(24):2546-2554.

    Google Scholar

    [38] Tanaka R, Iwata H. Bayesian optimization for genomic selection:A method for discovering the best genotype among a large number of candidates[J]. Theoretical and Applied Genetics, 2017, 131(1):1-13.

    Google Scholar

    [39] Seeger M. Gaussian processes for machine learning[J]. International Journal of Neural Systems, 2004, 14(2):69-106.

    Google Scholar

    [40] Colopy G W, Roberts S J, Clifton D A. Bayesian optimization of personalized models for patient vital-sign monitoring[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(2):301.

    Google Scholar

    [41] 陈云, 戴锦芳. 基于遥感数据的太湖蓝藻水华信息识别方法[J]. 湖泊科学, 2008, 20(2):179-183.

    Google Scholar

    [42] Chen Y, Dai J F. Extraction methods of cyanobacteria bloom in Lake Taihu based on RS data[J]. Journal of Lake Science, 2008, 20(2):179-183.

    Google Scholar

    [43] 张东彦, 尹勋, 佘宝, 等. 多源卫星遥感数据监测巢湖蓝藻水华爆发研究[J]. 红外与激光工程, 2019, 48(7):303-314.

    Google Scholar

    [44] Zhang D Y, Yin X, She B, et al. Using multi-source satellite imagery data to monitor cyanobacterial blooms of Chaohu Lake[J]. Infrared and Laser Engineering, 2019, 48(7):303-314.

    Google Scholar

    [45] 刘海秋, 任恒奎, 牛鑫鑫, 等. 基于Sentinel-2遥感影像的巢湖蓝藻水华提取方法研究[J]. 生态环境学报, 2021, 30(1):146-155.

    Google Scholar

    [46] Liu H Q, Ren H K, Niu X X, et al. Extraction of cyanobacteria bloom in Chaohu Lake based on Sentinel-2 remote sensing images[J]. Ecology and Environmental Sciences, 2021, 30(1):146-155.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(980) PDF downloads(93) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint