China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

SU Tengfei. 2023. A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information. Remote Sensing for Natural Resources, 35(1): 35-40. doi: 10.6046/zrzyyg.2021444
Citation: SU Tengfei. 2023. A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information. Remote Sensing for Natural Resources, 35(1): 35-40. doi: 10.6046/zrzyyg.2021444

A unsupervised quality valuation method for multi-scale remote sensing image segmentation based on boundary information

  • Multi-scale segmentation is a key step in the information extraction of high-resolution remote sensing images. However, the evaluation of segmentation quality and the quantification of segmentation errors are still challenging. Based on boundary strength information, this study developed an unsupervised segmentation evaluation method of selecting the optimal scale parameter and elevating the local segmentation quality for multi-scale remote sensing image segmentation. Segmentation errors include over-segmentation and under-segmentation. This study modeled the two types of errors using normalized boundary gradient characteristics. The gradient information of patch edges was considered in the estimation of over-segmentation errors, while the intra-patch gradients were employed for the assessment of under-segmentation errors. To validate the proposed method, this study conducted an experiment on the evaluation of multi-scale segmentation results using two scenes of high-resolution remote sensing images. The segmentation evaluation results of the method coincided perfectly with the actual segmentation effects. The results indicate that the method proposed in this study can effectively reflect over- and under-segmentation errors.
  • 加载中
  • [1] Hossain M, Chen D. Segmentation for object-based image analysis(OBIA):A review of algorithms and challenges from remote sensing perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(1):115-134.

    Google Scholar

    [2] Beauchemin M. Semi-supervised map regionalization for categorical data[J]. International Journal of Remote Sensing, 2019, 40(24):9401-9411.

    Google Scholar

    [3] Xiang D, Wang W, Tang T, et al. Adaptive statistical superpixel merging with edge penalty for polsar image segmentation[J]. IEEE Transactions on Geo-scienceand Remote Sensing, 2019, 58(4):2412-2429.

    Google Scholar

    [4] Zhang M, Xue Y, Ge Y, et al. Watershed segmentation algorithm based on luv color space region merging for extracting slope hazard boundaries[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):246.

    Google Scholar

    [5] Su T F, Liu T X, Zhang S W, et al. Machine learning-assisted region merging for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 168(1):89-123.

    Google Scholar

    [6] 张大明, 张学勇, 李璐, 等. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 国土资源遥感, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.

    Google Scholar

    [7] Zhang D M, Zhang X Y, Li L, et al. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Land and Resources, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.

    Google Scholar

    [8] Baatz M, Sch?pe A. Multiresolution segmentation:An optimizing approach for high quality multi-scale segmentation[C]. Angewandte Geographich Informationsverarbeitung, 2000,XII,12-23.

    Google Scholar

    [9] 范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.

    Google Scholar

    [10] Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technologies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi Area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.

    Google Scholar

    [11] 王华, 李卫卫, 李志刚, 等. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.

    Google Scholar

    [12] Wang H, Li W W, Li Z G, et al. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.

    Google Scholar

    [13] Costa H, Foody G M, Boyd D S. Supervised methods of image segmentation accuracy assessment in land cover mapping[J]. Remote Sensing of Environment, 2018, 205(2):338-351.

    Google Scholar

    [14] Witharana C, Civco D L. Optimizing multi-resolution segmentation scale using empirical methods:Exploring the sensitivity of the supervised discrepancy measure euclidean distance 2(ED2)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1):108-121.

    Google Scholar

    [15] Su T F, Zhang S W. Multi-scale segmentation method based on binary merge tree and class label information[J]. IEEE Access, 2018, 6(1):17801-17816.

    Google Scholar

    [16] Su T F, Zhang S W. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(1):256-276.

    Google Scholar

    [17] Johnson B, Xie Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):473-483.

    Google Scholar

    [18] Yang J, He Y, Weng Q. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1282-1286.

    Google Scholar

    [19] Troya-Galvis A, Gan?arski P, Passat N, et al. Unsupervised quantification of under- and over-segmentation for object-based remote sensing image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(5):1936-1945.

    Google Scholar

    [20] Su T F. Unsupervised evaluation-based region merging for high resolution remote sensing image segmentation[J]. GIScience & Remote Sensing, 2019, 56(6):811-842.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(796) PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint