[1] |
Hossain M, Chen D. Segmentation for object-based image analysis(OBIA):A review of algorithms and challenges from remote sensing perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(1):115-134.
Google Scholar
|
[2] |
Beauchemin M. Semi-supervised map regionalization for categorical data[J]. International Journal of Remote Sensing, 2019, 40(24):9401-9411.
Google Scholar
|
[3] |
Xiang D, Wang W, Tang T, et al. Adaptive statistical superpixel merging with edge penalty for polsar image segmentation[J]. IEEE Transactions on Geo-scienceand Remote Sensing, 2019, 58(4):2412-2429.
Google Scholar
|
[4] |
Zhang M, Xue Y, Ge Y, et al. Watershed segmentation algorithm based on luv color space region merging for extracting slope hazard boundaries[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):246.
Google Scholar
|
[5] |
Su T F, Liu T X, Zhang S W, et al. Machine learning-assisted region merging for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 168(1):89-123.
Google Scholar
|
[6] |
张大明, 张学勇, 李璐, 等. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 国土资源遥感, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.
Google Scholar
|
[7] |
Zhang D M, Zhang X Y, Li L, et al. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Land and Resources, 2022, 34(1):53-60.doi:10.6046/gtzyyg.2021089.
Google Scholar
|
[8] |
Baatz M, Sch?pe A. Multiresolution segmentation:An optimizing approach for high quality multi-scale segmentation[C]. Angewandte Geographich Informationsverarbeitung, 2000,XII,12-23.
Google Scholar
|
[9] |
范莹琳, 娄德波, 张长青, 等. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
Google Scholar
|
[10] |
Fan Y L, Lou D B, Zhang C Q, et al. Information extraction technologies of iron mine tailings based on object-oriented classification:A case study of Beijing-2 remote sensing images of the Qianxi Area,Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):153-161.doi:10.6046/zrzyyg.2021027.
Google Scholar
|
[11] |
王华, 李卫卫, 李志刚, 等. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.
Google Scholar
|
[12] |
Wang H, Li W W, Li Z G, et al. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3):63-71.doi:10.6046/zrzyyg.2020344.
Google Scholar
|
[13] |
Costa H, Foody G M, Boyd D S. Supervised methods of image segmentation accuracy assessment in land cover mapping[J]. Remote Sensing of Environment, 2018, 205(2):338-351.
Google Scholar
|
[14] |
Witharana C, Civco D L. Optimizing multi-resolution segmentation scale using empirical methods:Exploring the sensitivity of the supervised discrepancy measure euclidean distance 2(ED2)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87(1):108-121.
Google Scholar
|
[15] |
Su T F, Zhang S W. Multi-scale segmentation method based on binary merge tree and class label information[J]. IEEE Access, 2018, 6(1):17801-17816.
Google Scholar
|
[16] |
Su T F, Zhang S W. Local and global evaluation for remote sensing image segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130(1):256-276.
Google Scholar
|
[17] |
Johnson B, Xie Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):473-483.
Google Scholar
|
[18] |
Yang J, He Y, Weng Q. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6):1282-1286.
Google Scholar
|
[19] |
Troya-Galvis A, Gan?arski P, Passat N, et al. Unsupervised quantification of under- and over-segmentation for object-based remote sensing image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 8(5):1936-1945.
Google Scholar
|
[20] |
Su T F. Unsupervised evaluation-based region merging for high resolution remote sensing image segmentation[J]. GIScience & Remote Sensing, 2019, 56(6):811-842.
Google Scholar
|