[1] |
Kamińska A, Lisiewicz M, Stereńczak K, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.
Google Scholar
|
[2] |
毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015(3):27-31,48.
Google Scholar
|
[3] |
Bi K, Li Y C, Ding X B, et al. Aerial photogrammetric technology of light small UAV:Status and trend of development[J]. Bulletin of Surveying and Mapping, 2015(3):27-31,48.
Google Scholar
|
[4] |
汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18):1-12.
Google Scholar
|
[5] |
Wang P, Luo X W, Zhou Z Y, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18):1-12.
Google Scholar
|
[6] |
Kamińska A, Lisiewicz M, K Stereńczak, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.
Google Scholar
|
[7] |
Manandhar A, Hoegner L, Stilla U. Palm tree detection using circular autocorrelation of polar shape matrix[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, 3:465-472.
Google Scholar
|
[8] |
宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4):187-195.
Google Scholar
|
[9] |
Song Y N, Liu W P, Luo Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Scientia Silvae Sinicae, 2019, 55(4):187-195.
Google Scholar
|
[10] |
Culman M, Delalieux S, Van Tricht K. Individual palm tree detection using deep learning on RGB imagery to support tree inventory[J]. Remote Sensing, 2020, 12(21):3476.
Google Scholar
|
[11] |
王新彦, 吕峰, 易政洋. 基于深度学习的草坪树木检测方法研究[J]. 中国农机化学报, 2021, 42(7):136-141.
Google Scholar
|
[12] |
Wang X Y, Lyu F, Yi Z Y. Research on lawn tree detection method based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7):136-141.
Google Scholar
|
[13] |
Yu R, Luo Y, Zhou Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.
Google Scholar
|
[14] |
李海滨, 孙远, 张文明, 等. 基于YOLOv4-tiny的溜筒卸料煤尘检测方法[J]. 光电工程, 2021, 48(6):73-86.
Google Scholar
|
[15] |
Li H B, Sun Y, Zhang W M, et al. The detection method for coal dust caused by chute discharge based on YOLOv4-tiny[J]. Opto-Electronic Engineering, 2021, 48(6):73-86.
Google Scholar
|
[16] |
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020, 17(9):198-215.
Google Scholar
|
[17] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
Google Scholar
|
[18] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
Google Scholar
|
[19] |
Clevert D A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUS)[C]// Proceedings of the 4th International Conference on Learning Representations.ICLR, 2015:375-387.
Google Scholar
|
[20] |
Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]// CVF Conference on Computer Vision and Pattern Recognition.Seattle.IEEE, 2020:11531-11539.
Google Scholar
|
[21] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
Google Scholar
|
[22] |
赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8):289-296.
Google Scholar
|
[23] |
Zhao J L, Zhang X Z, Dong H Y. Defect detection in transmission line based on scale-invariant feature pyramid networks[J]. Computer Engineering and Applications, 2022, 58(8):289-296.
Google Scholar
|
[24] |
Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
Google Scholar
|
[25] |
郭晓征, 姚云军, 贾坤, 等. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.
Google Scholar
|
[26] |
Guo X Z, Yao Y J, Jia K, et al. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.
Google Scholar
|