China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

LI Li, HU Ruike, LI Suhong. 2023. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model. Remote Sensing for Natural Resources, 35(1): 81-89. doi: 10.6046/zrzyyg.2022065
Citation: LI Li, HU Ruike, LI Suhong. 2023. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model. Remote Sensing for Natural Resources, 35(1): 81-89. doi: 10.6046/zrzyyg.2022065

Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model

  • A rational land use plan is of great significance for avoiding high carbon emissions. The simulations of land use optimization from the perspective of low-carbon economy are conducive to the development of green economy and the scientific allocation of land resources. Taking Beijing as an example, this study incorporated the points of interest (POI) into the BP-ANN algorithm module of the FLUS model and verified the simulation accuracy of the improved model through comparison using the land use data of 2010 and 2020. On this basis, by coupling the Markov method and the order preference by similarity ideal solution (TOPSIS) method, this study simulated and analyzed the structure and spatial layout of land quantity in the study area in 2030 under the natural evolution scenario and the low-carbon economy scenario. The results show that: ① Compared with those of the original FLUS model, the Kappa coefficient and the overall accuracy of the improved model by incorporating POI data increased by 4.85% and 3.42%, respectively. These results indicate that the improved model had higher simulation accuracy. ② The simulation results verified that, under the natural evolution scenario, the carbon emission and the land for construction would increase by 7.70% and 7.68%, respectively, and the areas of farmland and grassland would continue to decline. ③ Under the low-carbon economy scenario, the carbon emissions would be reduced by 198.49×104 t, the continuous expansion trend of construction land would be curbed, the occupation of grassland in low mountainous areas would be mitigated, and the area of forest land in the north would increase significantly. The results show that the simulation accuracy of the land use model would change with urban development elements and that the incorporation of POI data helped to provide more effective decision support for land planning. The low-carbon economy-oriented land structure adjustment and spatial layout optimization can be used as a reference for the rational use, planning, and layout of regional lands.
  • 加载中
  • [1] Wang G Z, Han Q, Bauke D V. The multi-objective spatial optimization of urban land use based on low-carbon city planning[J]. Ecological Indicators, 2021, 125:107540.

    Google Scholar

    [2] 马晓哲, 王铮. 土地利用变化对区域碳源汇的影响研究进展[J]. 生态学报, 2015, 35(17):5898-5907.

    Google Scholar

    [3] Ma X Z, Wang Z. Progress in the study on the impact of land-use change on regional carbon sources and sinks[J]. Acta Ecological Sinica, 2015, 35(17):5898-5907.

    Google Scholar

    [4] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15.

    Google Scholar

    [5] Hu A G. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology(Social Science Edition), 2021, 21(3):1-15.

    Google Scholar

    [6] Han D, Qiao R L, Ma X M. Optimization of land-use structure based on the trade-off between carbon emission targets and economic development in Shenzhen,China[J]. Sustainability, 2018, 11(1):1-17.

    Google Scholar

    [7] 张雪花, 许文博, 张宝安. 雄安新区对京津冀城市群低碳协同发展促进作用预评估[J]. 经济地理, 2020, 40(3):16-23,83.

    Google Scholar

    [8] Zhang X H, Xu W B, Zhang B A. Pre-evaluation of the role of Xiongan New District in the low carbon synergy development of Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geo-graphy, 2020, 40(3):16-23,83.

    Google Scholar

    [9] 许小亮, 李鑫, 肖长江, 等. 基于CLUE-S模型的不同情景下区域土地利用布局优化[J]. 生态学报, 2016, 36(17):5401-5410.

    Google Scholar

    [10] Xu X L, Li X, Xiao C J, et al. Land use layout optimization under different scenarios by using the CLUE-S model[J]. Acta Ecologica Sinica, 2016, 36(17):5401-5410.

    Google Scholar

    [11] 王昊煜, 高培超, 谢一茹, 等. 基于改进型NSGA-Ⅱ算法的西宁市土地利用多目标优化[J]. 地理与地理信息科学, 2020, 36(6):84-89.

    Google Scholar

    [12] Wang H Y, Gao P C, Xie Y R, et al. Multi-objective optimization of land use in Xining City based on improve NSGA-Ⅱ[J]. Geography and Geo-Information Science, 2020, 36(6):84-89.

    Google Scholar

    [13] Wang M, Dong Z Y, Wei X, et al. Optimization of the spatial pattern of land use in mountain towns: A case study of Yuexi County,Anqing City,Anhui Province[J]. IOP Conference Series:Earth and Environmental Science, 2020, 569:012085.

    Google Scholar

    [14] 曾永年, 王慧敏. 以低碳为目标的海东市土地利用结构优化方案[J]. 资源科学, 2015, 37(10):2010-2017.

    Google Scholar

    [15] Zeng Y N, Wang H M. Optimization of land use structure for low-carbon targets in Haidong City,Qinghai Plateau[J]. Resources Science, 2015, 37(10):2010-2017.

    Google Scholar

    [16] Zhu J, Sun Y Z, Song S Y, et al. Cellular automata for simulating land-use change with a constrained irregular space representation:A case study in Nanjing City,China[J]. Environment and Planning B:Urban Analytics and City Science, 2021, 48(7):1841-1859.

    Google Scholar

    [17] Luo G P, Yin C Y, Chen X, et al. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale:A case study of Sangong watershed in Xinjiang,China[J]. Ecological Complexity, 2010, 7(2):198-207.

    Google Scholar

    [18] 王志远, 张考, 丁志鹏, 等. 纳入动态数据的改进FLUS模型在城市增长边界划定中的应用[J]. 地球信息科学学报, 2020, 22(12):2326-2337.

    Google Scholar

    [19] Wang Z Y, Zhang K, Ding Z P, et al. Delimitation of urban growth boundary based on improved FLUS model considering dynamic data[J]. Journal of Geo-Information Science, 2020, 22(12): 2326-2337.

    Google Scholar

    [20] 宋世雄, 梁小英, 陈海, 等. 基于多智能体和土地转换模型的耕地撂荒模拟研究——以陕西省米脂县为例[J]. 自然资源学报, 2018, 33(3):515-525.

    Google Scholar

    [21] Song S X, Liang X Y, Chen H, et al. The simulation of cropland abandonment based on multi-agent system and land transformation model:A case study of Mizhi County,Shaanxi Province[J]. Journal of Natural Resources, 2018, 33(3):515-525.

    Google Scholar

    [22] Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116.

    Google Scholar

    [23] 苏迎庆, 刘庚, 赵景波, 等. 基于FLUS模型的汾河流域生态空间多情景模拟预测[J]. 干旱区研究, 2021, 38(4):1152-1161.

    Google Scholar

    [24] Su Y Q, Liu G, Zhao J B, et al. Multi-scenario simulation prediction of ecological space in Fenhe River basin based on FLUS model[J]. Arid Zone Research, 2021, 38(4):1152-1161.

    Google Scholar

    [25] 曹帅, 金晓斌, 杨绪红, 等. 耦合MOP与GeoSOS-FLUS模型的县级土地利用结构与布局复合优化[J]. 自然资源学报, 2019, 34(6):1171-1185.

    Google Scholar

    [26] Cao S, Jin X B, Yang X H, et al. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan District[J]. Journal of Natural Resources, 2019, 34(6):1171-1185.

    Google Scholar

    [27] 张经度, 梅志雄, 吕佳慧, 等. 纳入空间自相关的FLUS模型在土地利用变化多情景模拟中的应用[J]. 地球信息科学学报, 2020, 22(3):531-542.

    Google Scholar

    [28] Zhang J D, Mei Z X, Lyu J H, et al. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation[J]. Journal of Geo-Information Science, 2020, 22(3): 531-542.

    Google Scholar

    [29] 程雨薇. 基于改进FLUS模型的杭州市土地利用格局模拟[D]. 杭州: 浙江大学, 2019.

    Google Scholar

    [30] Cheng Y W. Lang use simulation in Hangzhou based on improved FLUS model[D]. Hangzhou: Zhejiang University, 2019.

    Google Scholar

    [31] Miao R M, Wang Y X, Li S. Analyzing urban spatial patterns and functional zones using Sina Weibo POI Data:A case study of Beijing[J]. Sustainability, 2021, 13(2):1-15.

    Google Scholar

    [32] 罗紫薇, 胡希军, 韦宝婧, 等. 基于多准则CA-Markov模型的城市景观格局演变与预测——以上杭县城区为例[J]. 经济地理, 2020, 40(10):58-66.

    Google Scholar

    [33] Luo Z W, Hu X J, Wei B J, et al. Urban landscape pattern evolution and prediction based on multi-criteria CA-Markov model: Take Shanghang County as an example[J]. Economic Geography, 2020, 40(10):58-66.

    Google Scholar

    [34] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409.

    Google Scholar

    [35] Liu X J, Li X, Liang X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39 (3):397-409.

    Google Scholar

    [36] 王旭, 马伯文, 李丹, 等. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报, 2020, 35(1):230-242.

    Google Scholar

    [37] Wang X, Ma B W, Li D, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1):230-242.

    Google Scholar

    [38] Liang X, Liu X P, Li X, et al. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 2018, 177:47-63.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1262) PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint