China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. 2023. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence. Remote Sensing for Natural Resources, 35(1): 99-106. doi: 10.6046/zrzyyg.2021411
Citation: FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. 2023. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence. Remote Sensing for Natural Resources, 35(1): 99-106. doi: 10.6046/zrzyyg.2021411

An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence

  • Currently, the high-quality fusion of SAR and optical images is a hot research topic. However, the significant radiation difference and weak gray correlation between SAR and optical images greatly reduce the fusion quality. In this regard, this study proposed a SAR and optical remote sensing image fusion algorithm that coupled non-local self-similarity and divergence. First, images were decomposed in the frequency domain. Then, the non-local directional entropy and divergence were used as characteristic parameters to guide the fusion of low- and high-frequency components, respectively. Finally, the fusion components were reconstructed to obtain fusion images with clear structural features and rich spectral information. The comparative experiments verified the effectiveness of the proposed algorithm in fusing SAR with optical images and its superiority in maintaining structural features and reducing spectral distortion.
  • 加载中
  • [1] 王梦瑶, 孟祥超, 邵枫, 等. 基于深度学习的SAR辅助下光学遥感图像去云方法[J]. 光学学报, 2021, 41(12):243-251.

    Google Scholar

    [2] Wang M Y, Meng X C, Shao F, et al. SAR-assisted optical remote sensing image cloud removal method based on deep learning[J]. Acta Optica Sinica, 2021, 41(12):243-251.

    Google Scholar

    [3] 李卫国, 蒋楠, 熊世为. 基于ARSIS策略的SAR影像与多光谱遥感小波融合[J]. 农业工程学报, 2012, 28(s1):158-163.

    Google Scholar

    [4] Li W G, Jiang N, Xiong S W. Multi-spectral and SAR wavelet fusion based on ARSIS strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(s1):158-163.

    Google Scholar

    [5] 陈东, 李飚, 沈振康. SAR与可见光图像融合算法的研究[J]. 系统工程与电子技术, 2000(9):5-7,43.

    Google Scholar

    [6] Chen D, Li B, Shen Z K. Research on data fusion algorithm of SAR and optical images[J]. Systems Engineering and Electronics, 2000(9):5-7,43.

    Google Scholar

    [7] 徐赣, 尤红建. 小波的SAR和光学图像融合方法比较研究[J]. 测绘科学, 2008(1):109-112,249.

    Google Scholar

    [8] Xu G, You H J. Comparative study on wavelet-based SAR and optical image fusion methods[J]. Science of Surveying and Mapping, 2008(1):109-112,249.

    Google Scholar

    [9] 李晖晖, 郭雷, 李国新. 基于脊波变换的SAR与可见光图像融合研究[J]. 西北工业大学学报, 2006(4):418-422.

    Google Scholar

    [10] Li H H, Guo L, Li G X. Is Ridgelet transform better than wavelet transform in SAR and optical image fusion[J]. Journal of Northwestern Polytechnical University, 2006(4):418-422.

    Google Scholar

    [11] 高文涛, 汪小钦, 凌飞龙, 等. 基于纹理的雷达与多光谱遥感数据小波融合研究[J]. 中国图象图形学报, 2008(7):1341-1346.

    Google Scholar

    [12] Gao W T, Wang X Q, Ling F L, et al. Fusion algorithm research based on texture for SAR and multispectral images with wavelet transform[J]. Journal of Image and Graphics, 2008(7):1341-1346.

    Google Scholar

    [13] Anandhi D, Valli S. An algorithm for multi-sensor image fusion using maximum a posteriori and nonsubsampled contourlet transform[J]. Computers and Electrical Engineering, 2018, 65(1):139-152.

    Google Scholar

    [14] 易维, 曾湧, 原征. 基于NSCT变换的高分三号SAR与光学图像融合[J]. 光学学报, 2018, 38(11):76-85.

    Google Scholar

    [15] Yi W, Zeng Y, Yuan Z. Fusion of GF-3 SAR and optical images based on the nonsubsampled contourlet transform[J]. Acta Optica Sinica, 2018, 38(11):76-85.

    Google Scholar

    [16] 李小军, 闫浩文, 杨树文, 等. 一种多光谱遥感影像与航拍影像融合算法[J]. 遥感信息, 2019, 34(4):11-15.

    Google Scholar

    [17] Li X J, Yan H W, Yang S W, et al. A fusion algorithm of multispectral remote sensing image and aerial image[J]. Remote Sensing Information, 2019, 34(4):11-15.

    Google Scholar

    [18] Padwick C, Deskevich M, Pacifici F, et al. WorldView-2 pan-sharpening[C]// Proceedings of the ASPRS 2010 Annual Conference,San Diego,CA,USA. 2010, 2630:1-14.

    Google Scholar

    [19] Chong X J. Comparative analysis of different fusion rules for SAR and multispectral image fusion based on NSCT and IHS transform[C]// International Conference on Computer and Computational Sciences(ICCCS),IEEE: 2015,271-274.

    Google Scholar

    [20] Maryam G, Mohammad S H, Habibollah D. Nonsubsampled contourlet transform-based conditional random field for SAR images segmentation[J]. Signal Processing, 2020, 174(9):107623.

    Google Scholar

    [21] 卜丽静, 赵爽, 张正鹏. NLM与比率图像的多时相SAR图像去噪方法[J]. 遥感信息, 2021, 36(3):17-24.

    Google Scholar

    [22] Pu L J, Zhao S, Zhang Z P. A multi-temporal SAR image denoising method based on NLM and ratio image[J]. Remote Sensing Information, 2021, 36(3):17-24.

    Google Scholar

    [23] 胡学敏, 余进, 邓重阳, 等. 基于时空立方体的人群异常行为检测与定位[J]. 武汉大学学报(信息科学版), 2019, 44(10):1530-1537.

    Google Scholar

    [24] Hu X M, Yu J, Deng C Y, et al. Abnormal crowd behavior detection and location based on spatial-temporal cube[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1530-1537.

    Google Scholar

    [25] Samadhan C, Kulkarni,Priti P.Rege,Pixel level fusion techniques for SAR and optical images:A review[J]. Information Fusion (2020), doi:https://doi.org/10.1016/j.inffus.2020.01.003.

    Google Scholar

    [26] 郑胜, 田岩, 柳健, 等. 基于散度的不同焦点图像融合方法[J]. 华中科技大学学报(自然科学版), 2007(4):7-10.

    Google Scholar

    [27] Zheng S, Tian Y, Liu J, et al. Divergence-based multifocuses image fusion[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2007(4):7-10.

    Google Scholar

    [28] 尹峰, 孟祥超, 梁鹏. 一种国产高分卫星遥感影像变分融合方法[J]. 国土资源遥感, 2018, 30(2):100-106.doi:10.6046/gtzyyg.2018.02.14.

    Google Scholar

    [29] Yin F, Meng X C, Liang P. A variational fusion method for remote sensing images of China’s domestic high-resolution satellites[J]. Remote Sensing for Land and Resources, 2018, 30(2):100-106.doi:10.6046/gtzyyg.2018.02.14.

    Google Scholar

    [30] Lichun S, Jonathan L. Fusion of hyperspectral and multispectral images based on a Bayesian nonparametric approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2):1205-1218.

    Google Scholar

    [31] Zhang Q, Maldague X. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing[J]. Infrared Physics & Technology, 2016, 74(1):11-20.

    Google Scholar

    [32] Li X J, Yan H W, Xie W Y, et al. An improved pulse-coupled neural network model for pan sharpening[J]. Sensors, 2020, 20(13),2764.

    Google Scholar

    [33] Tu T M, Su S C, Syu H C, et al. A new look at HIS like image fusion methods[J]. Information Fusion, 2001, 2(3):177-186.

    Google Scholar

    [34] Psjr C, Sides S C, Anderson J A. Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(3):256-303.

    Google Scholar

    [35] Hong G, Zhang Y, Mercer B. A wavelet and HIS integration method to fuse high resolution sar with moderate resolution multispectral images[J]. Photogrammetric Engineering & Remote Sensing, 2009, 75(10):1213-1223.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1273) PDF downloads(175) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint