| [1] |
Herold M, Roberts D. Spectral characteristics of asphalt road aging and deterioration:Implications for remote-sensing applications[J]. Applied Optics, 2005, 44(20):4327-4334.
Google Scholar
|
| [2] |
Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models[J]. International Journal of Computer Vision, 1988, 1(4):321-331.
Google Scholar
|
| [3] |
罗庆洲, 尹球, 匡定波. 光谱与形状特征相结合的道路提取方法研究[J]. 遥感技术与应用, 2007, 22(3):339-344.
Google Scholar
|
| [4] |
Luo Q Z, Yin Q, Kuang D B. Research on extracting road based on its spectral feature and shape feature[J]. Remote Sensing Technolo-gy and Application, 2007, 22(3):339-344.
Google Scholar
|
| [5] |
Ghaziani M, Mohamadi Y, Koku A B, et al. Extraction of unstructured roads from satellite images using binary image segmentation[C]// 2013 21st Signal Processing and Communications Applications Conference (SIU).IEEE, 2013:1-4.
Google Scholar
|
| [6] |
Sirma?ek B, ünsalan C. Road network extraction using edge detection and spatial voting[C]// 2010 20th International Conference on Pattern Recognition.IEEE, 2010:3113-3116.
Google Scholar
|
| [7] |
贾建鑫, 孙海彬, 蒋长辉, 等. 多源遥感数据的道路提取技术研究现状及展望[J]. 光学精密工程, 2021, 29(2):430-442.
Google Scholar
|
| [8] |
Jia J X, Sun H B, Jiang C H, et al. Road extraction technology based on multi-source remote sensing data: Review and prospects[J]. Optics and Precision Engineering, 2021, 29(2):430-442.
Google Scholar
|
| [9] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
Google Scholar
|
| [10] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2016:770-778.
Google Scholar
|
| [11] |
Mnih V, Hinton G E. Learning to detect roads in high-resolution aerial images[C]// European Conference on Computer Vision.Springer,Berlin,Heidelberg, 2010:210-223.
Google Scholar
|
| [12] |
叶雪娜. 基于卷积神经网络的遥感图像道路提取研究[D]. 西安: 陕西师范大学, 2017.
Google Scholar
|
| [13] |
Ye X N. Research on remote sensing image road extraction based on convolutional neural network[D]. Xi’an: Shaanxi Normal University, 2017.
Google Scholar
|
| [14] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Washington, DC: IEEE Computer Society, 2015:3431-3440.
Google Scholar
|
| [15] |
Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361.
Google Scholar
|
| [16] |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the European Conference on Computer Vision, 2018:801-818.
Google Scholar
|
| [17] |
魏云超, 赵耀. 基于DCNN的图像语义分割综述[J]. 北京交通大学学报, 2016, 40(4):82-91.
Google Scholar
|
| [18] |
Wei Y C, Zhao Y. A review on image semantic segmentation based on DCNN[J]. Journal of Beijing Jiaotong University, 2016, 40(4):82-91.
Google Scholar
|
| [19] |
Sandler M, Howard A, Zhu M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4510-4520.
Google Scholar
|
| [20] |
Mnih V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013.
Google Scholar
|