China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

ZHANG Tian, ZHOU Zhongfa, WANG Lingyu, ZHAO Xin, ZHANG Wenhui, ZHANG Shu, WANG Yu. 2023. A method for soil roughness measurement based on UAV point cloud data. Remote Sensing for Natural Resources, 35(1): 115-122. doi: 10.6046/zrzyyg.2021461
Citation: ZHANG Tian, ZHOU Zhongfa, WANG Lingyu, ZHAO Xin, ZHANG Wenhui, ZHANG Shu, WANG Yu. 2023. A method for soil roughness measurement based on UAV point cloud data. Remote Sensing for Natural Resources, 35(1): 115-122. doi: 10.6046/zrzyyg.2021461

A method for soil roughness measurement based on UAV point cloud data

  • The soil roughness of cultivated land is an important element affecting the monitoring of agricultural information, such as soil moisture, microwave remote sensing observation, and plant growth. Soil roughness is generally interpreted according to field photos. However, such interpretation suffers some shortcomings such as low efficiency and anthropogenic effects on processing results. UAV low-altitude remote sensing is sensitive to surface relief. To explore the precision of the soil roughness determined using UAV data, this study employed UAV photogrammetry to photograph the surface and then compared the photogrammetry results with the data obtained using a gauging plate for soil roughness. The results show that the close-range photogrammetry had mean absolute errors of mainly 0.4~1.2 cm, a mean relative error of 6.16%, and a root mean square error of 0.40 cm. Therefore, UAV-based point cloud photogrammetry could be effectively applied to the measurement of surface roughness, and a smaller sampling area is associated with more accurate soil roughness.
  • 加载中
  • [1] 徐元柳. 基于裸露地表辐射传输模型的粗糙度反演与地形校正[D]. 北京: 中国地质大学(北京), 2009:45-53.

    Google Scholar

    [2] Xu Y L. Roughness retrieval and topographic correction based on bare surface radiative transfer model[D]. Beijing: China University of Geosciences(Beijing), 2009:45-53.

    Google Scholar

    [3] 江冲亚, 方红亮, 魏珊珊. 地表粗糙度参数化研究综述[J]. 地球科学进展, 2012, 27(3):292-303.

    Google Scholar

    [4] Jiang C Y, Fang H L, Wei S S. Review of land surface roughness parameterization study[J]. Advances in Earth Science, 2012, 27(3):292-303.

    Google Scholar

    [5] 姜灵海. 基于哨兵数据的土壤水分反演算法研究[D]. 成都: 电子科技大学, 2020.

    Google Scholar

    [6] Jiang L H. Research on soil moisture retreval based on Sentinel data[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

    Google Scholar

    [7] 梁勇, 杨磊, 吴秋兰, 等. 地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J]. 武汉大学学报(信息科学版), 2018, 43(10):1546-1552.

    Google Scholar

    [8] Liang Y, Yang L, Wu Q L, et al. Simulation of soil roughness impact in GNSS-R soil moisture retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10):1546-1552.

    Google Scholar

    [9] Alvarez-Mozos J, Verhoest N E, Larranaga A, et al. Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations[J]. Sensors (Basel), 2009, 9(1):463-489.

    Google Scholar

    [10] 陈世超, 林剑辉, 孙宇瑞, 等. 基于土壤表面粗糙度预测降雨影响下的表层土壤孔隙度[J]. 北京林业大学学报, 2013, 35(2):69-74.

    Google Scholar

    [11] Chen S C, Lin J H, Sun Y R, et al. Predicting topsoil porosity using soil surface roughness under rainfall influence[J]. Journal of Beijing Forestry University, 2013, 35(2):69-74.

    Google Scholar

    [12] Darboux F, Gascuelodoux C, Davy P. Effects of surface water storage by soil roughness on overland-flow generation[J]. Earth Surface Processes and Landforms, 2010, 27(3):223-233.

    Google Scholar

    [13] García Moreno R, et al.Díaz álvarez M C,Saa Requejo A, Multifractal analysis of soil surface roughness[J]. Vadose Zone Journal, 2008, 7(2):512-520.

    Google Scholar

    [14] Thomsen L M, Baartman J E M, Barneveld R J, et al. Soil surface roughness:Comparing old and new measuring methods and application in a soil erosion model[J]. Soil, 2015, 1(1):399-400.

    Google Scholar

    [15] Riegler-Nurscher P, Moitzi G, Prankl J, et al. Machine vision for soil roughness measurement and control of tillage machines during seedbed preparation[J]. Soil and Tillage Research, 2020, 196:104351.

    Google Scholar

    [16] Robichaud P R, Molnau M. Measuring soil roughness changes with an ultrasonic profiler[J]. Transactions of the ASAE, 1990, 33(6):1851-1858.

    Google Scholar

    [17] 陶浩然, 陈权, 李震, 等. 近景摄影测量提高裸露地表粗糙度测量精度[J]. 农业工程学报, 2017, 33(15):162-167.

    Google Scholar

    [18] Tao H R, Chen Q, Li Z, et al. Improvement of soil surface roughness measurement accuracy by close-range photogrammetry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15):162-167.

    Google Scholar

    [19] 蔡祥, 孙宇瑞, 林剑辉, 等. 基于激光反射的土壤表面粗糙度测量装置设计与试验[J]. 农业机械学报, 2010, 41(1):68-69.

    Google Scholar

    [20] Cai X, Sun Y R, Lin J H, et al. Design of a laser scanner for characterizing soil surface roughness[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1):68-69.

    Google Scholar

    [21] 王章琼, 白俊龙, 张明. 数码摄影测量及三维建模在岩体结构面粗糙度教学中的应用[J]. 实验技术与管理, 2020, 37(3):45-47.

    Google Scholar

    [22] Wang Z Q, Bai J L, Zhang M. Application of digital photogrammetry and 3D modeling in teaching of rock discontinuity surface roughness[J]. Experimental Technology and Management, 2020, 37(3):45-47.

    Google Scholar

    [23] 王洪晓, 张光辉, 朱平宗, 等. 3种地表随机糙率测量方法比较[J]. 水土保持研究, 2020, 27(4):72-76.

    Google Scholar

    [24] Wang H X, Zhang G H, Zhu P Z, et al. Comparison of three metho-ds to measure surface random roughness[J]. Journal of Soil and Water Conservation, 2020, 27(4):72-76.

    Google Scholar

    [25] 张胜宾, 黄培奎, 赵祚喜. 土壤表面粗糙度检测方法研究[J]. 农机化研究, 2016, 38(11):257-262.

    Google Scholar

    [26] Zhang S B, Huang P K, Zhao Z X. A research on soil surface roughness measurement methods[J]. Journal of Agricultural Mechanization Research, 2016, 38(11):257-262.

    Google Scholar

    [27] 李红阳. 基于无人机摄影测量技术的土地调查方法研究[D]. 唐山: 华北理工大学, 2018.

    Google Scholar

    [28] Li H Y. The research method of land survey based on UAV photogrammetry techology[D]. Tangshan: North China University of Science and Technology, 2018.

    Google Scholar

    [29] 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报(信息科学版), 2014, 39(5):505-512.

    Google Scholar

    [30] Li D R, Li M. Research progress and application prospect of UAV remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):505-512.

    Google Scholar

    [31] Warner W S. Mapping a three-dimensional soil surface with hand-held 35 mm photography[J]. Soil and Tillage Research, 1995, 34(3):187-197.

    Google Scholar

    [32] 许元红. 低空无人机技术在贵州山区大比例尺DLG制作中的应用研究[D]. 贵阳: 贵州师范大学, 2018:1-8.

    Google Scholar

    [33] Xu Y H. The application of low-altitude drone thchnology in the production of large scale DLG in Guizhou mountain area[D]. Guiyang: Guizhou Normal University, 2018:1-8.

    Google Scholar

    [34] 胡玉祥, 张洪德, 熊文辉, 等. 基于三维激光点云的地表竣工规划验收测绘级工程应用[J]. 测绘通报, 2020(s1):53-58.

    Google Scholar

    [35] Hu Y X, Zhang H D, Xiong W H, et al. Survey and engineering application of metro completion plan acceptance based on 3D laser point cloud[J]. Bulletin of Surveying and Mapping, 2020(s1):53-58.

    Google Scholar

    [36] 尹林江, 周忠发, 李韶慧, 等. 基于无人机可见光影像对喀斯特地区植被信息提取与覆盖度研究[J]. 草地学报, 2020, 28(6):1664-1672.

    Google Scholar

    [37] Yin L J, Zhou Z F, Li S H, et al. Research on vegetation extraction and fractional vegetation cover of Karst area based on visible light image of UAV[J]. Acta Agrestia Sinica, 2020, 28(6):1664-1672.

    Google Scholar

    [38] 冯静静. 基于LiDAR点云数据与高分辨率影像的单木参数提取[D]. 北京: 北京林业大学, 2017:1-5.

    Google Scholar

    [39] Feng J J. Single tree parameter extraction based on LiDAR point cloud data and high resolution image[D]. Beijing: Beijing Forestry University, 2017:1-5.

    Google Scholar

    [40] 赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR点云数据森林郁闭度估测[J]. 遥感技术与应用, 2020, 35(5):1136-1145.

    Google Scholar

    [41] Zhao X, Yue C R, Li C G, et al. Canopy density estimation based on airborne LiDAR point cloud data[J]. Remote Sensing Technolo-gy and Application, 2020, 35(5):1136-1145.

    Google Scholar

    [42] 姜云, 王军, 陈方圆. 黑土区大田尺度下LiDAR点云数据农作物种植区提取[J]. 测绘工程, 2020, 29(4):32-37.

    Google Scholar

    [43] Jiang Y, Wang J, Chen F Y. Extraction of paddy planting area based on LiDAR point cloud data at field-scale in black soil area[J]. Engineering of Surveying and Mapping, 2020, 29(4):32-37.

    Google Scholar

    [44] 段平, 李佳, 李海坤, 等. 无人机影像点云与地面激光点云匹配的三维建模方法[J]. 测绘工程, 2020, 29(4):44-47.

    Google Scholar

    [45] Duan P, Li J, Li H K, et al. 3D modeling method of UAV image point cloud matching with ground laser point cloud[J]. Engineering of Surveying and Mapping, 2020, 29(4):44-47.

    Google Scholar

    [46] 刘洁, 杨晓菊, 廖宜涛, 等. 基于线结构激光传感器的土壤表面粗糙度测量方法研究[J]. 农业工程学报, 2019, 35(3):134-138.

    Google Scholar

    [47] Liu J, Yang X J, Liao Y T, et al. Study on soil surface roughness measurement method based on linear laser sensor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3):134-138.

    Google Scholar

    [48] 罗达, 林杭生, 金钊, 等. 无人机数字摄影测量与激光雷达在地形地貌与地表覆盖研究中的应用及比较[J]. 地球环境学报, 2018, 10(3):215-222.

    Google Scholar

    [49] Luo D, Lin H S, Jin Z, et al. Application and comparison of UAV digital photogrammetry and LiDAR in topography and land cover research[J]. Journal of Earth Environment, 2018, 10(3):215-222.

    Google Scholar

    [50] Verhoeven G. Taking computer vision aloft-archaeological three-dimensional reconstructions from aerial photographs with PhotoScan[J]. Archaeological Prospection, 2011, 18(1):67-73.

    Google Scholar

    [51] Remondino F, El-Hakim S. Image-based 3D modelling:A review[J]. Photogrammetric Record, 2010, 21(115):269-291.

    Google Scholar

    [52] Tavani S, Granado P, Corradetti A, et al. Building a virtual outcrop,extracting geological information from it,and sharing the results in Google Earth via OpenPlot and Photoscan:An example from the Khaviz Anticline (Iran)[J]. Computers and Geosciences, 2014, 63:44-53.

    Google Scholar

    [53] 柴子为, 康峻, 王力, 等. 基于无人机影像的山地人工林景观DEM构建[J]. 遥感技术与应用, 2015, 30(3):504-509.

    Google Scholar

    [54] Cai Z W, Kang J, Wang L, et al. Construction of mountain plantation landscape DEM based on UAV image[J]. Remote Sensing Technology and Application, 2015, 30(3):504-509.

    Google Scholar

    [55] 行敏锋, 黄方, 官雨薇. 基于图像处理的土壤表面粗糙度测量实验研究[J]. 实验科学与技术, 2019, 17(6):1-3.

    Google Scholar

    [56] Xing M F, Huang F, Guan Y W. Experimental study on measurement of soil surface roughness based on image processing[J]. Experiment Science and Technology, 2019, 17(6):1-3.

    Google Scholar

    [57] 刘立超, 魏国梁, 张青松, 等. 基于激光雷达的农业耕作微地貌测量装置设计与实验[J]. 农业机械学报, 2019, 50(7):85-91.

    Google Scholar

    [58] Liu L C, Wei G L, Zhang Q S, et al. Design and experiment of agricultural microgeomorphology measuring device based on LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7):85-91.

    Google Scholar

    [59] 雷志斌. 基于高分三号雷达数据的作物覆盖区土壤水分反演研究[D]. 北京. 中国地质大学(北京), 2020:18-20.

    Google Scholar

    [60] Lei Z B. Research on soil moisture retrieval of crop covering area based on GaoFen3 Radar data[D]. Beijing: China University of Geosciences(Beijing), 2020:18-20.

    Google Scholar

    [61] 李俐, 王荻, 潘彩霞, 等. 基于神经网络与决策树的土壤粗糙度测量[J]. 农业工程学报, 2015, 31(14):132-138.

    Google Scholar

    [62] Li L, Wang D, Pan C X, et al. Soil surface roughness measuring method based on neural network and decision tree[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14):132-138.

    Google Scholar

    [63] 张恒瑞, 段喜明, 魏征, 等. 基于无人机多光谱遥感的华北地区夏玉米LAI监测[J]. 山西农业科学, 2021, 49(5):608-614.

    Google Scholar

    [64] Zhang H R, Duan X M, Wei Z, et al. LAI monitoring of summer maize in North China based on UAV multi-spectral remote sensing[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(5):608-614.

    Google Scholar

    [65] 郑兴明, 赵凯, 李晓洁. 农田表面粗糙度参数的测量与精度分析[J]. 地球信息科学学报, 2013, 15(5):753-755.

    Google Scholar

    [66] Zheng X M, Zhao K, Li X J. Accuracy analysis of agriculture soil surface roughness parameter[J]. Journal of Geo-Information Science, 2013, 15(5):753-755.

    Google Scholar

    [67] Kim S B, Moghaddam M, Tsang L, et al. Models of L-band Radar backscattering coefficients over global rain for soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1381-1396.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1491) PDF downloads(142) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint