China Aero Geophysical Survey and Remote Sensing Center for Natural ResourcesHost
地质出版社Publish
2023 Vol. 35, No. 1
Article Contents

HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. 2023. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang. Remote Sensing for Natural Resources, 35(1): 171-179. doi: 10.6046/zrzyyg.2021415
Citation: HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. 2023. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang. Remote Sensing for Natural Resources, 35(1): 171-179. doi: 10.6046/zrzyyg.2021415

Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang

  • The Axi mining area in Xinjiang has a complex geographical environment. The long-term exploitation of mineral resources has caused severe ground subsidence and deformation in the mining area, as well as safety hazards of mining and production and the destruction of the surrounding ecological environment. This study aims to further investigate and analyze the spatial-temporal variation characteristics of the ground subsidence and the patterns of surface deformation in the Axi mining area. To this end, this study first calculated the land subsidence using the small baseline subset-interferometric synthetic aperture Radar (SBAS-InSAR) technique based on the 127 scenes descending Sentinel-1A images acquired from February 9, 2017 to April 25, 2021. Then, it compared the subsidence monitoring results obtained using the InSAR technique with the leveling results for verification. Finally, this study analyzed the spatial-temporal variation characteristics of land subsidence in the Axi mining area in recent five years and investigated the driving factors for the land subsidence. The results show that the surface deformation of the Axi mining area showed a roughly stable trend and significant local subsidence throughout the monitoring period. The main factors affecting the ground subsidence included mineral exploitation, geological structure, precipitation, and the impoundment of open-pit mines. This study will provide a scientific basis for ground subsidence monitoring and the future proper exploitation of underground minerals in the Axi mining area.
  • 加载中
  • [1] 李毅, 蒋金雄, 杜玉玲, 等. 融合分布式目标的矿区采动地表时序InSAR监测[J]. 中国矿业大学学报, 2020, 49(6):1199-1206,1232.

    Google Scholar

    [2] Li Y, Jiang J X, Du Y L, et al. Mining surface time series InSAR monitoring of mining area integrating distributed targets[J]. Journal of China University of Mining and Technology, 2020, 49(6):1199-1206,1232.

    Google Scholar

    [3] 徐郡, 胡晋山, 康建荣, 等. 基于SBAS-InSAR的矿区村庄地面沉降监测与分析[J]. 金属矿山, 2019(10):74-80.

    Google Scholar

    [4] Xu J, Hu J S, Kang J R, et al. Monitoring and analysis of land subsidence of mining villages based on SBAS-InSAR[J]. Metal Mines, 2019(10):74-80.

    Google Scholar

    [5] 许强, 蒲川豪, 赵宽耀, 等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7):957-969.

    Google Scholar

    [6] Xu Q, Pu C H, Zhao K Y, et al. Temporal InSAR monitoring and analysis of temporal and spatial evolution characteristics of land subsidence in Yan’an new area[J]. Journal of Wuhan University (Information Science Edition), 2021, 46(7):957-969.

    Google Scholar

    [7] Shi M, Gong H L, Gao M L, et al. Recent ground subsidence in the North China Plain,China,revealed by Sentinel-1A datasets[J]. Remote Sensing, 2020, 12(21):2579.

    Google Scholar

    [8] 夏元平, 陈志轩, 张毅. 南昌市地面沉降InSAR监测及影响因子分析[J]. 测绘科学, 2020, 45(11):115-122,129.

    Google Scholar

    [9] Xia Y P, Chen Z X, Zhang Y. InSAR monitoring and impact factor analysis of land subsidence in Nanchang[J]. Surveying and Mapping Science, 2020, 45(11):115-122,129.

    Google Scholar

    [10] 袁悦, 贾丽云, 张绪教, 等. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[J]. 地理与地理信息科学, 2020, 36(5):56-64.

    Google Scholar

    [11] Yuan Y, Jia L Y, Zhang X J, et al. Monitoring and mechanism analysis of land subsidence in Haikou area based on SBAS-InSAR technology[J]. Geography and Geographic Information Science, 2020, 36(5):56-64.

    Google Scholar

    [12] Dong L K, Wang C, Tang Y X, et al. Time series InSAR three-dimensional displacement inversion model of coal mining areas based on symmetrical features of mining subsidence[J]. Remote Sensing, 2021, 13(11):2143.

    Google Scholar

    [13] Yang Q, Chang Z Q, Wang Y Q, et al. Ground deformation of Dongsheng mining area revealed by multi-temporal InSAR[C]// IOP Conference Series: Earth and Environmental Science.IOP Publishing, 2021, 675(1):012029.

    Google Scholar

    [14] Vassileva M, AlHalbouni D, Motagh M, et al. A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió,Brazil[J]. Scientific Reports, 2021, 11(1):1-13.

    Google Scholar

    [15] 王辉, 曾琪明, 焦健, 等. 结合序贯平差方法监测地表形变的InSAR时序分析技术[J]. 北京大学学报(自然科学版), 2021, 57(2):241-249.

    Google Scholar

    [16] Wang H, Zeng Q M, Jiao J, et al. InSAR time series analysis technology for monitoring surface deformation combined with sequential adjustment method[J]. Journal of Peking University (Natural Science Edition), 2021, 57(2):241-249.

    Google Scholar

    [17] 魏聪敏, 葛伟鹏, 邵延秀, 等. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4):864-872.

    Google Scholar

    [18] Wei C M, Ge W P, Shao Y X, et al. Monitoring land subsidence and deformation in Longdong area using Sentinel-1A synthetic aperture Radar interferometric time series[J]. Remote Sensing Technology and Application, 2020, 35(4):864-872.

    Google Scholar

    [19] 王海艳, 冯光财, 苗露, 等. InSAR视角下准噶尔盆地农业灌溉区地表形变特征和演化规律[J]. 遥感学报, 2020, 24(10):1233-1242.

    Google Scholar

    [20] Wang H Y, Feng G C, Miao L, et al. Surface deformation characteristics and evolution law of agricultural irrigation area in Junggar Basin from the perspective of InSAR[J]. Journal of Remote Sensing, 2020, 24(10):1233-1242.

    Google Scholar

    [21] Xu J M, Zhu W B, Xu J L, et al. High-intensity longwall mining-induced ground subsidence in Shendong coalfield,China[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 141:104730.

    Google Scholar

    [22] 丁朋朋, 贾超, 韩瑶, 等. 时序InSAR技术的潍北平原地面沉降分析[J]. 测绘科学, 2021, 46(8):135-140.

    Google Scholar

    [23] Ding P P, Jia C, Han Y, et al. Land subsidence analysis of Weibei plain using time series InSAR technology[J]. Surveying and Mapping Science, 2021, 46(8):135-140.

    Google Scholar

    [24] 施显健, 任超, 周吕, 等. InSAR填海区地铁沿线地表沉降反演分析[J]. 测绘科学, 2021, 46(2):146-151,164.

    Google Scholar

    [25] Shi X J, Ren C, Zhou L, et al. Inversion analysis of surface subsidence along subway in InSAR reclamation area[J]. Surveying and Mapping Science, 2021, 46(2):146-151,164.

    Google Scholar

    [26] 任欣, 易加强. 新疆伊宁县地质灾害特征及其防治[J]. 西部探矿工程, 2014, 26(7):101-103.

    Google Scholar

    [27] Ren X, Yi J Q. Characteristics and prevention of geological disasters in Yining County,Xinjiang[J]. Western Exploration Engineering, 2014, 26(7):101-103.

    Google Scholar

    [28] 王宝刚, 张晓斌, 张铭. 新疆阿希勒金矿床地质特征及找矿标志[J]. 陕西地质, 2018, 36(1):20-25.

    Google Scholar

    [29] Wang B G, Zhang X B, Zhang M. Geological characteristics and prospecting criteria of Axile gold deposit in Xinjiang[J]. Shanxi Geology, 2018, 36(1):20-25.

    Google Scholar

    [30] 胡乐银, 张景发, 商晓青. SBAS-InSAR技术原理及其在地壳形变监测中的应用[J]. 地壳构造与地壳应力文集, 2010(1):82-89.

    Google Scholar

    [31] Hu L Y, Zhang J F, Shang X Q. Principle of SBAS-InSAR technology and its application in crustal deformation monitoring[J]. Collected Works of Crustal Structure and Crustal Stress, 2010(1):82-89.

    Google Scholar

    [32] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5):1476-1486.

    Google Scholar

    [33] Li S S, Li Z W, Hu J, et al. Monitoring seasonal frozen soil deformation in Qinghai-Xizang Plateau by SBAS-InSAR technology[J]. Chinese Journal of Geophysics, 2013, 56(5):1476-1486.

    Google Scholar

    [34] 董少春, 种亚辉, 胡欢, 等. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学), 2019, 55(3):370-380.

    Google Scholar

    [35] Dong S C, Zhong Y H, Hu H, et al. Land subsidence monitoring in Changzhou from 2015 to 2018 based on time series InSAR[J]. Journal of Nanjing University (Natural Science), 2019, 55(3):370-380.

    Google Scholar

    [36] 曹发伟, 廖维谷. SBAS技术在矿区地面沉降监测中的应用[J]. 测绘通报, 2021(3):156-158,163.

    Google Scholar

    [37] Cao F W, Liao W G. Application of SBAS technology in land subsidence monitoring in mining area[J]. Surveying and Mapping Bulletin, 2021(3):156-158,163.

    Google Scholar

    [38] Amani M, Poncos V, Brisco B, et al. InSAR coherence analysis for wetlands in Alberta,Canada using time-series Sentinel-1 data[J]. Remote Sensing, 2021, 13(16):3315.

    Google Scholar

    [39] Gong C G, Lei S G, Bian Z F, et al. Using time series InSAR to assess the deformation activity of open-pit mine dump site in severe cold area[J]. Journal of Soils and Sediments, 2021, 21(11):3717-3732.

    Google Scholar

    [40] Liu J H, Hu J, Bürgmann R, et al. A strain-model based InSAR time series method and its application to the Geysers Geothermal field,California[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(8): e2021JB021939.

    Google Scholar

    [41] 沙永莲, 王晓文, 刘国祥, 等. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3):194-201.doi:10.6046/zrzyyg.2020026.

    Google Scholar

    [42] Sha Y L, Wang X W, Liu G X, et al. SBAS-InSAR based monitoring and inversion of surface subsidence of the Shadunzi coal mine in Hami City,Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3):194-201.doi:10.6046/zrzyyg.2020026.

    Google Scholar

    [43] 张扬. 武汉市地面沉降时空格局、驱动因子及水文效应研究[D]. 武汉: 武汉大学, 2019.

    Google Scholar

    [44] Zhang Y. Study on temporal and spatial pattern,driving factors and hydrological effects of land subsidence in Wuhan[D]. Wuhan: Wuhan University, 2019.

    Google Scholar

    [45] 贺小平. 阿希金矿床地质特征及成因探讨[J]. 新疆有色金属, 2001(4):1-4.

    Google Scholar

    [46] He X P. Geological characteristics and genesis of Axi gold deposit[J]. Xinjiang Nonferrous Metals, 2001(4):1-4.

    Google Scholar

    [47] 魏佳林, 曹新志, 王庆峰, 等. 新疆阿希金矿床黄铁矿标型特征及其地质意义[J]. 地质科技情报, 2011, 30(5):89-96.

    Google Scholar

    [48] Wei J L, Cao X Z, Wang Q F, et al. Typomorphic characteristics and geological significance of pyrite in Axi gold deposit,Xinjiang[J]. Geoscience and Technology Information, 2011, 30(5):89-96.

    Google Scholar

    [49] 彭义伟, 顾雪祥, 章永梅, 等. 新疆阿希与塔吾尔别克金矿床的成因联系:来自流体包裹体、S-Pb同位素和黄铁矿热电性的证据[J]. 地质学报, 2020, 94(10):2919-2945.

    Google Scholar

    [50] Peng Y W, Gu X X, Zhang Y M, et al. Geochemical characteristics and prospecting potential of Xilaokou gold deposit,Shandong Province[J]. Acta Geological Sinica, 2020, 94(10):2919-2945.

    Google Scholar

    [51] 李志忠. 浅谈新疆阿希金矿床地质特征及成矿机理[J]. 新疆有色金属, 2006(3):6-7.

    Google Scholar

    [52] Li Z Z. Geological characteristics and metallogenic mechanism of Axi gold deposit in Xinjiang[J]. Xinjiang Nonferrous Metals, 2006(3):6-7.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1646) PDF downloads(189) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint